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a b s t r a c t

With the development of intelligent transportation systems, clustering methods are now being adopted
for traffic pattern recognition to discover the time-varying laws in road networks; this had attracted
significant attention from the industry and academia over the past decades. Existing methods mainly
focus on the mobility pattern and spatiotemporal dimension, ignoring the complex relationships
among these segments in road networks. The main issues can be divided into two categories: deep
integration of the structural and attribute information; global spatial dependencies for clustering
structural properties. To address these issues, a clustering method for motif-based attributed road
networks is proposed. A higher-order connectivity model based on motif discovery is designed, and a
weighted matrix of adjacent segments is defined in the road networks. Moreover, a clustering model
for motif-based attributed road networks is constructed, considering the joint relationship between
node structure and features. In this study, a set of experiments were conducted on two real-world
datasets. The results indicated that the performance of the proposed method is superior to that of the
state-of-the-art methods.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

With the rapid development of information technology, city
perations are producing massive amounts of information on a
aily basis. Road traffic information, which contains the records
f state changes and equipment operations, is usually dynamic,
ulti-source, and continuous. Leveraging complex traffic datasets

o draw meaningful conclusions is a hot research topic in industry
nd academia.
Data analysis has become a core branch in intelligent trans-

ortation systems (ITS) [1], and traffic pattern recognition is one
f the most important research topics. Traffic patterns present
ariations in transportation networks, including the topological
onstruction of road networks, vehicle trajectory [2], human mo-
ility [3], and other dimensions, and attempt to discover similar
eeks, days, or hours within a day that have similar traffic
ttribute (i.e., traffic index or speed) [4]. It aims to achieve the
ollowing: (1) traffic operators can have a temporal plan for
perations, such as publishing traffic information in advance,
djusting traffic signal control in a timely manner, and discrim-
nating between recurrent congestion and outliers [5], and (2)
rban travelers can adjust routes and plan according to the traffic
ules [6].

∗ Corresponding author.
E-mail address: xjkong@ieee.org (X. Kong).
https://doi.org/10.1016/j.knosys.2022.109035
0950-7051/© 2022 Elsevier B.V. All rights reserved.
With the boom of emerging technologies such as fifth-
generation networks [7] and edge computing [8], mobile net-
works have become the mainstream of research because of the
considerable accuracy resulting from their frequently updated
information [9]. Nevertheless, researchers have paid significant
attention to clustering methods for the mining of traffic pat-
terns [10,11]. Almanna et al. [4] modeled the matching problems
between two disjoint sets of agents and used a multi-objective
consensus clustering algorithm to perform a spatial analysis of
the state of urban traffic congestion. Garcia-Rodenas et al. [11]
converted traffic flow data into a pseudo-covariance matrix to
collect the dynamic correlation between road links, and obtained
daily traffic pattern recognition results using a control strategy
repository via the k-means algorithm. Yang et al. [12] developed
a mobility pattern model to cluster the taxi original destination
point data using the density-based spatial clustering of appli-
cations with noise (DBSCAN) algorithm and obtained different
mobility traffic patterns. Analyzing the characteristics of human
mobility are beneficial for understanding traffic patterns and
improving transportation services [13]. To fulfill the requirement
of understanding human mobility patterns, Wang et al. [2] con-
structed the k-nearest neighbor-based Internet of Vehicles to
achieve dynamic trajectory clustering. Huang et al. [14] utilized
the DBSCAN method to identify frequently visited places and
quantified the spatial–temporal entropy rate to measure the
regularity of private cars’ mobility. These methods have achieved

https://doi.org/10.1016/j.knosys.2022.109035
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tate-of-the-art performance in terms of mobility patterns and
patiotemporal dimensions.
Identifying the differing characteristics of road networks is

ssential for analyzing similar traffic patterns [15]. Most existing
ethods are concerned with data features, without the engage-
ent of complex relationships among these segments in road
etworks. As shown in Fig. 1, the upper panel denotes a road
etwork, where each node represents road segment, solid lines
ith arrows represent the connectivity of the vehicle’s flow, and
he lower panel shows clustered results on traffic attributes, such
s traffic index and speed. It does not utilize segment structures
o find clusters from traffic data. Recently, several methods [16–
8] have been proposed to integrate structural properties into
lustering analysis. Despite the empirical success of the afore-
entioned techniques, two issues of traffic clustering analysis via
ttributed networks [19] still exist:

• Low accuracy owing to the heterogeneity of the struc-
ture and attribute information. The structural and attribute
information, describing nodes from two perspectives, is es-
sentially heterogeneous [20,21]. The non-linear relationship
between the segments in road networks is not considered,
and these methods fail to effectively fuse the structure and
attribute information of road segments. The merging of
these two aspects of road segments remains an issue for
traffic pattern recognition.

• Lower-order connectivity of road network structures. Road
networks have long-distance neighborhood relations; there-
fore it may not be adequate to improve clustering perfor-
mance by utilizing neighbors within a few hops of each
node [22]. However, most of these methods neglect inter-
actions among road segments from a structural perspective.
The integration of higher-order connectivity patterns into
road networks is a new challenge.

Network representation learning extracts potential informa-
ion by representing the nodes in a network as a low-dimensional
pace [23]. Attributed networks are a form of network represen-
ation. They fuse the node attributes and topological structures
24] and present various structure patterns with average de-
ree, finiteness connectivity, and spatial pattern correlation [25,
6]. Thus, road networks are real-life examples of attributed
etworks. Traffic patterns can be considered not only for traf-
ic attributes but also for the underlying physical topology to
valuate better clustering accuracy. Motifs are non-isomorphic
onnected sub-structures that frequently occur in attributed net-
orks, in which the number of nodes is greater than or equal
o three [27]. As motifs consider higher-order correlations of
rganizational structures, they are suitable for capturing global
nformation to improve the performance of structural feature
ggregation [28,29].
Motivated by this, a traffic pattern clustering method utilizing

otif-based attributed road networks (PCMAN) is proposed. The
ethod is designed to handle higher-order dependencies and

mprove the accuracy of traffic pattern recognition. Compared
ith the current clustering methods, the proposed method has
wo significant advantages. First, motifs are applied to define road
etwork structures and extract higher-order spatial correlations
f traffic information. Second, the consensus graph clustering
ethod is adopted to identify the optimized factorization results

hrough attributed road networks and alleviate the heterogeneity
etween the structural and attribute properties of the segments.
o the best of our knowledge, this study is the first attempt to
pply motif-based attributed networks to analyze traffic patterns.
The major contributions of this paper can be summarized as

ollows:
 i

2

Fig. 1. Example of traffic pattern clustering in a road network.

• The proposed method clusters the joint relationship be-
tween node structure and features, and utilizes the k-means
algorithm to mine traffic patterns in road networks. More-
over, the joint relationship is determined by considering
nonnegative matrix factorization and Karush–Kuhn–Tucker
condition optimization.

• A higher-order connectivity model of road networks that
utilizes motifs, is presented. It accurately represents the
weighted matrix of adjacent road segments and captures the
global information of road networks through motif-based
search and iterative adjacency matrix string representation.

• Extensive experiments were performed on two real-world
datasets to evaluate the performance of the proposed method
The experimental results suggest that the proposed method
can achieve the best performance and help improve insights
into urban commuting schemes.

The rest of the paper is organized as follows: Section 2 de-
cribes the state-of-the-art clustering method. In Section 3, the
roposed method is introduced. Section 4 presents the experi-
ental results of the proposed method. Finally, Section 5 con-
ludes the paper.

. Related work

Clustering, which helps discover the similarity of different data
bjects, is important for exploring traffic patterns [30]. In this
ection, related studies are reviewed with regard to traffic pattern
lustering and attributed network learning.

.1. Traffic pattern clustering

Existing studies on traffic pattern clustering have focused on
he macroscopic operating state of traffic. Calafate et al. [31]
tilized historical data via induction loop detections and then
roposed a time-dependent traffic flow model. The obtained traf-
ic patterns provided suitable route recommendations to drivers.
guyen et al. [32] established a fast-search index based on traf-
ic congestion characteristics and adopted an extended support
ector machine (SVM) algorithm for regional congestion pat-
ern classification. Byon et al. [33] developed a real-time pattern
ecognition model. It is based on an artificial neural network and
mproved with a geographic information system layer, which was
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sed for automatic pattern detection on a specific ITS. Zhang
t al. [34] estimated the true value of the membership degree
f any element in the set by the weighted aggregation oper-
tor of the double hesitation fuzzy rough set and proposed a
ethod based on the assessment deviation theories of traffic
atterns. However, these methods are designed only to handle
ata features.
Some graph-based methods consider the strong relations be-

ween data structures [35,36] and are feasible for capturing global
nformation to improve the clustering performance [22]. Many
raph-based clustering methods aim to leverage graph connec-
ivity patterns and partition data nodes into disjointed groups.
hang et al. [37] used graph embedding and clustering algorithms
o discover hierarchical mobility community structures and iden-
ified time-varying traffic behavior patterns based on smart card
ata and other urban data. Chandra et al. [38] used a weighted
ynamic geometric graph to represent the proximity of road
gent behaviors and proposed a regularization algorithm based
n spectral clustering to improve trajectory prediction accuracy.
u et al. [39] developed a fuzzy clustering method to identify the
patiotemporal impact areas of incidents in an automated free-
ay and adopted a clustering algorithm based on graph theory to
istinguish the relations of possible multiple independent blocks
n a non-recurrent congestion area. However, these methods do
ot consider the features associated with these road network
odes in graph topological structures.

.2. Attributed network learning

Recently, convergent development of complex networks has
nspired new ideas for graph clustering. Some graph-based clus-
ering methods attempt to consider both node connectivity and
ata features (i.e., the attributed networks). Wang et al. [40] de-
igned a marginalized graph autoencoder algorithm to integrate
ode and feature information, and marginalized the corrupted
eatures in a graph autoencoder context to learn graph feature
epresentations. Pan et al. [41] encoded the topological structure
nd node content to match a prior distribution, and developed
wo adversarial methods learned with a graph convolutional au-
oencoder to produce a robust representation in graph clustering
nd other fields. Bu et al. [42] proposed a graph k-means frame-
ork to integrate both node and feature information in social
edia networks (SMNs) and developed a dynamic game model

o explore the evolution of the opinion matrix by discovering the
areto-optimal community structure. Li et al. [43] developed an
mbedding graph autoencoder with joint clustering via adjacency
haring (EGAE-JOCAS) model to share the same adjacency within
raph convolution layers. It uses node attributes and adjacency to
enerate adequate representations for joint clustering. Although
hese methods achieve promising performance in various appli-
ation contexts, the node attributes and topological structures in
graph fail to fuse effectively owing to the heterogeneity of the
wo aspects.

Matrix factorization (MF) can approximate the original data
atrix by the product of two or more matrices [44] and solve

he aforementioned problem (i.e., the heterogeneity of node at-
ributes and topological structures). Nonnegative matrix factor-
zation (NMF) is a typical MF method that has been widely
dopted to assign cluster members by leveraging the consensus
elationship between node attributes and topological structure
45]. Ma and Dong [46] presented a semi-supervised NMF by in-
orporating partial information into the topological structure and
roved the equivalence of evolutionary modularity density. Meng
t al. [47] projected an attributed network into a unified low-
imensional vector space and developed a search result diver-
ification method using NMF to learn node representation. Guo
3

et al. [48] designed a consensus factorization-based framework
to co-cluster networked data and simultaneously aligned net-
worked nodes and features for the best clustering results through
NMF. Huang et al. [24] addressed the issue of heterogeneity of
structures and attributes using joint NMF and graph optimization.
They factorized the established attribute similarity matrix and
topological adjacent matrix to detect attributed networks. Con-
sidering the dynamic evolution of road networks, these methods
are not capable of capturing global graph structures [49] and
fail to address the higher-order connectivity patterns of road
networks.

To address this problem, in [50], the researchers employed
a higher-order organization of complex networks. Motifs are
networked sub-structures in a graph and are beneficial for un-
derstanding global structural graph principles [30]. Yin et al. [51]
proposed a motif-based approximate personalized Pagerank
(MAPPR) algorithm to incorporate higher-order clustering infor-
mation captured by motifs and solve the problem of large-scale
real-time changeable networks. Li et al. [52] introduced motif
correlation clustering to minimize the cost of clustering errors
associated with both edges and higher-order network struc-
tures and offered approximation guarantees according to motif
size. William et al. [53] captured higher-order graph structures
using motif adjacency matrices based on weighted networks
and constructed a motif-based model for clustering bipartite
weighted networks. Mei et al. [54] designed a graph-based clus-
tering algorithm by exploiting k-core decomposition and motifs
(KCoreMotif), and grouped the remaining vertices in the re-
maining (k-1)-core sub-graphs to obtain the desired clusters of
higher-order networks. Several studies indicate that road net-
works contain complex sub-graph structures, which have certain
characteristics of transitivity, interactivity, balance, etc. Therefore,
motifs are suitable for higher-order road networks with small
sub-graph structures as units. However, motif-based clustering
is adopted in medical identification [55], smart meters [56],
and other fields and rarely adopted in transportation. Moreover,
motifs fail to handle the network heterogeneity of node attributes
and topological structures.

Motivated by the aforementioned literature, a clustering
method based on an attributed network that combines NMF and
motifs, is proposed. In this method, NMF is applied to factorize
the established node feature similarity matrix and topological
adjacent matrix to obtain a better clustering result of traffic
patterns. The performance of the fusion of node topology and
attribute similarity has been verified by [57]. In addition, by
adopting motifs, the method benefits from capturing higher-order
spatial dependencies in the traffic.

3. Methodology

In this section, the proposed PCMAN method is presented to
identify the traffic patterns in a road network. Fig. 2 illustrates
the PCMAN framework.

The traffic data process generates a topological adjacent ma-
trix (denoted by W ) and a node feature matrix (denoted by F ) for
each road segment (node). The motif-based weighted adjacency
matrix (denoted by WM ) is the variant of node adjacent matrix
W using the motif-based search and influence degree weighted
calculation method. Simultaneously, node feature matrix was
transformed into node feature similarity matrix (denoted by S)
ia similarity calculation. NMF was then employed to factorize
M and S , and the common basis matrix (denoted by B) was

obtained when the factorization iteration ended. The outputs of
the different basis matrix components were clustered by road
segments to obtain the traffic pattern results. The key notations
used in this study are listed in Table 1.
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Fig. 2. Overview of the proposed PCMAN Framework. PCMAN performs co-clustering by considering information from two aspects: road network topological structures
and node features. PCMAN factorizes each of them and then explores the consensus of their factorized values by using loss function to achieve optimal clustering
results. The acronyms ‘‘f_weekdays’’ and ‘‘o_weekdays’’ represent the first and last weekdays, and other weekdays, respectively.
Table 1
Notations used in PCMAN.
Symbols Definition and description

G A directed graph
V Node set of G
E Edge set of G
WM The motif-based weighted adjacency matrix
wij,k The weighted value of adjacent nodes vi and vj
F Node feature matrix
S Node feature similarity matrix
B The common basis matrix
F 1 The feature matrix for WM
F 2 The feature matrix for S
α Parameter for S and F 2
S̄k The average of the silhouette measures

3.1. Problem formulation

A directed graph G = (V , E,WM ) with m nodes is used
o describe a road network, where node vi ∈ V denotes road
egment, edge (vi, vj) ∈ E denotes the directed connection from
ode vi to node vj and WM ∈ RN×N represents a motif-based
eighted adjacency matrix. When there is an edge from node vi

to node vj, WM is the sum of the weights on the edge degree
involved by motifs; otherwise, WM is zero.

To obtain the node feature similarity matrix, node features
and node feature similarities must be considered. Node feature
matrices F ∈ RN×d are collected to characterize the network
node features, where d is the number of features in a node.
Node feature similarity matrices S ∈ RN×N are used to explore
clustered results for both nodes and features. For simplicity, a
linear relationship S = ⟨f , f ⟩ is used, where f ∈ F is a vector
ij i j i

4

representation of the ith node across all features and S ij = ⟨fi, fj⟩
is the similarity degree of fi and fj.

3.2. Motif-based higher-order road network structural representa-
tion

Because the higher-order connectivity structures presented
in road networks have their own biases, triangular motifs are
selected as the research object in combination with traffic the-
ory. Fig. 3 presents all the triangular motifs used [50], in which
different motifs convey different interactive patterns.

Owing to the directional characteristics of road networks, the
five motif types shown in Fig. 3 are selected to represent higher-
order structures in road networks. M1, M5, M8, M9, and M10
represent the ring, detour, diverging, two-hop and converging
structures, respectively. Fig. 4 illustrates an example. The road
links in local areas form three motif types (two-hop, converging
and diverging), the ring motif-based type, and the detour motif-
based type in Fig. 4 (a) - Fig. 4 (c), respectively. The five types
of two-hop, converging, diverging, ring, and detour are shown
in Fig. 4 (d). Considering the different influences of motifs in
road networks, a three-step strategy was adopted to express
higher-order structures.

3.2.1. Motif-based graph search
To avoid repeatedly counting motifs in road networks, a

breadth-first search on the graphs is adopted.
First, ID numbers are performed on all nodes in road networks

to form an ordered queue Qv = {v1, v2, . . . , vn}, and the first node
v1 is considered the starting node of the motif-based search to
form a sub-queue Q1 = {v1}. Next, the second layer enters with a
tree structure, and the remaining n− 1 nodes are added to Q in
1
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Fig. 3. Triangular motifs.

Fig. 4. Higher-order connectivity patterns in a road network.

Fig. 5. Illustration for motif-based search and IAMS. All the motifs are at the
leaf level with IAMS labeled beneath.

sequence to form n−1 sub-queues {v1, v2}, {v1, v3}, · · · , {v1, vn}.
f the two nodes of the sub-queue are not adjacent, the sub-queue
s deleted. Third, because the number of nodes in the motif-based
oad networks is three, the tree structure enters the third layer
o complete the motif-based search, i.e., n−1 subqueues {v1, v2},
v1, v3}, · · · , {v1, vn} and the remaining nodes corresponding to
v are all added in sequence to form n2−3n+2

2 new sub-queues
v1, v2, v3}, {v1, v2, v4}, · · · , {v1, v3, v4}, · · · , {v1, vn−1, vn}. If the
hird node of the sub-queue is not adjacent to the previous two
odes, the sub-queue is deleted. In the same way, the second
ode v2 is the starting search node. When the previous node v1
s removed, the aforementioned search method is also adopted to
etermine the sub-queue with three nodes. It continues until the
ast node vn, and then the motif-based search ends.

Fig. 5 is an example of motif-based search: (a) is a directed
raph of a road network with four nodes, and (b) is the motif
earch based on (a). According to the breadth-first search on
raphs, node {1} is used as the starting search node, three sub-
ueues {1, 2, 3}, {1, 2, 4}, {1, 3, 4} are obtained, and the number
f motifs is determined.

.2.2. Motif-based type determination
According to the breadth-first search on graphs in the first

tep, the number of motifs in road networks can be determined;
owever, the specific types of motifs cannot be distinguished.
hus, the iterative adjacency matrix string (IAMS) representation
ethod [28] was adopted to define motif-based identification
5

nd determine motif types. IAMS is defined as follows: if there
s a motif with three nodes, 0 indicates that the current node
as no adjacent relationship with the previous nodes, 1 indicates
hat the previous nodes have a directed relationship with the
urrent node, −1 indicates that the current node has a directed
elationship with the previous nodes, and 2 represents the bidi-
ectional relationship between the current node and the previous
odes. The IAMS corresponding to the three motifs in Fig. 5(b) is
epresented as ‘‘2,1,0’’, ‘‘2,1,1’’, and ‘‘1,1, -1’’.

.2.3. Motif-based weighted adjacency matrix representation
According to the previous two steps, all road network motifs

re classified according to their types, and the IAMS values of
otifs are normalized corresponding to each pair of adjacent
odes vi and vj.

ij,k =
count(iamsk)
|set(motif )|

, (1)

where wij,k is the weighted value of the adjacent nodes vi and vj
belonging to the kth motif, count(iamsk) is the number of IAMS
values iamsk in all motifs, and set(motif ) is the set of all motifs.

The motif-based weighted adjacency matrix is expressed as
WM ∈ RN×N :

(WM )ij =
n∑

k=1

wij,k, (2)

where (WM )ij is the motif-based weighted value of the adjacent
nodes vi and vj, and n is the number of set(motif ).

3.3. Motif-based attributed road network pattern clustering

Because the attribute consistency of nodes corresponds to the
graph topological structures in the feature similarity matrix [22],
a node feature similarity matrix S is constructed to alleviate
the heterogeneity between structure and attribute information of
road networks.

Given the attributed road network G, NMF approximates the
motif-based weighted adjacency matrix WM and node feature
similarity matrix S by the product of three nonnegative low-rank
matrices B, F 1, and F 2 such that

WM ≈ BF 1, S ≈ BF 2,B ≥ 0, F 1 ≥ 0, F 2 ≥ 0 (3)

Eq. (3) can be solved by minimizing the l2 norm of the approx-
imation, that is,

min ∥WM − BF 1∥
2,B ≥ 0, F 1 ≥ 0 (4)

min ∥S − BF 2∥
2,B ≥ 0, F 2 ≥ 0, (5)

where B is the common basis matrix, F 1 and F 2 are feature
matrices for WM and S , respectively, and ∥.∥2 is the l2 norm.

According to Eqs. (3)–(5), the loss function based on the joint
decomposition WM and S is expressed as follows:

O(B, F 1, F 2) = min
1
2
(∥WM − BF 1∥

2
F + α∥S − BF 2∥

2
F ), (6)

where O(B, F 1, F 2) is the loss function, ∥.∥F is the Frobenius norm
of matrices, and α is the parameter for S and F 2.

By expressing the aforementioned loss function as a matrix
trace function, the objective function represented by the trace
function can be obtained as follows:

L =∥BF 1∥
2
F + ∥BF 2∥

2
F − 2Tr(BTWMF T

1 )

− 2αTr(BT SF T
2 )+ ∥WM∥

2
+ α∥S∥2,

(7)

where Tr(.) is the trace function, and BT , F T
1 and F T

2 are the trans-
pose matrices of the low-rank matrices B, F and F , respectively.
1 2
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As ∥WM∥
2 and ∥S∥2 are constant, the three components of

B, F 1 and F 2 in Eq. (7) can be derived as follows:
∂L
∂B
= −(WMF T

1 + αSF T
2 )+ BF 1F T

1 + BF 2F T
2 (8)

∂L
∂F 1
= BTBF 1 − BTWM (9)

∂L
∂F 2
= BTBF 2 − αBT S (10)

By setting the partial derivatives in Eqs. (8)–(10) as zero, the
pdated rules for B, F 1 and F 2 are calculated according to the

Karush–Kuhn–Tucker (KKT) condition [24]:

B = B⊙
[WMF T

1 + αSF T
2 ]

[F 1F T
1 + F 2F T

2 ]
(11)

1 = F 1 ⊙
[BTWM ]

[BTB]
(12)

2 = F 2 ⊙
[αBT S]
BTB

, (13)

here ⊙ denotes Hadamard product, []/[] denotes Hadamard
ivision.

Algorithm 1: PCMAN.

Input: G = (V , E), m nodes, n motifs, parameter α

utput: cluster C
1: Initialize: F , S
2: Initialize: WM according to Eqs. (1)–(2)
3: set B, F1 and F2 according to Eqs. (3)–(5)
4: repeat
5: update O(B, F1, F2) according to Eq. (6)

6: B = B⊙ [WM FT
1 +αSFT

2 ]

[F1FT
1 +F2F

T
2 ]

7: F1 = F1 ⊙ [B
TWM ]

[BT B]

8: F2 = F2 ⊙ [αB
T S]

BT B
9: until the minimum of O(B, F1, F2) is reached

10: obtain C clustered by B using k−means
11: return C

According to Eqs. (11)–(13), the calculated B, F 1, and F 2 values
re substituted into Eq. (6) for repeated iterations until the value
f the loss function reaches 0.001. Finally, the common basis
atrix B is calculated.

.4. Example of PCMAN

As shown in Fig. 2, the calculating process is presented as
ollows:

According to the topological structure, the node adjacent ma-
rix W is expressed:

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
1 1 0 1 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Considering edge (v1, v3) as an example, in which the involved

otifs are v → v → v , v → v ← v , v → v → v ,
1 3 2 1 3 2 1 3 6

6

Table 2
Records of original data.
Segment ID Time Traffic index

2271 2018-09-01 00:00 1.1322
2271 2018-09-01 00:10 1.2019
2271 2018-09-01 00:20 1.1394
2271 2018-09-01 00:30 1.2076
... ... ...
2271 2018-09-10 23:30 1.1019
2271 2018-09-10 23:40 1.0918
2271 2018-09-10 23:50 1.1797

v1 → v3 ← v6, v1 → v3 → v4, and v1 → v3 ← v4,
thus the number of motifs is 6. The number of set(motif ) is 24;
thus, (WM )13 is 0.25. According to Eqs. (1)–(2), the motif-based
eighted adjacency matrix WM can be numerically solved.
The node feature matrix F corresponds to the nodes in v1, v2,
· · , v8. It is directly constructed using the traffic index of six
imeslots and is expressed as follows:

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.4 1.5 1.3 1.2 1.2 1.3
1.2 1.1 1.3 1.1 1.2 1.2
1.0 1.3 1.2 1.2 1.2 1.2
1.1 1.1 1.3 1.2 1.2 1.2
1.2 1.2 1.2 1.4 1.2 1.3
1.1 1.1 1.2 1.2 1.2 1.5
1.2 1.2 1.1 1.2 1.2 1.3
1.3 1.1 1.3 1.2 1.3 1.2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
The node feature similarity matrix S is obtained by the simi-

larity degree method described in Section 3.1:

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.00 0.75 0.79 0.70 0.73 0.56 0.74 0.63
0.75 1.00 0.57 0.93 0.52 0.47 0.31 0.75
0.79 0.57 1.00 0.72 0.70 0.39 0.41 0.48
0.70 0.93 0.72 1.00 0.68 0.52 0.30 0.73
0.73 0.52 0.70 0.68 1.00 0.67 0.80 0.57
0.56 0.47 0.39 0.52 0.67 1.00 0.65 0.41
0.74 0.31 0.41 0.30 0.80 0.65 1.00 0.41
0.63 0.75 0.48 0.73 0.57 0.41 0.41 1.00

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
According to Eqs. (3)–(6), the feature matrices are updated

until convergence (parameter α is set to 0.01). Then the feature
matrices F 1 and F 2 and the common basis matrix B are given.

The common basis matrix B is performed by k-means algo-
rithm, and outputs the clustered results.

The algorithm of PCMAN is illustrated in Algorithm 1.

4. Experiments

4.1. Data preparation

To evaluate the proposed method, two different datasets con-
taining traffic index were used: (1) the dataset in Chengdu, China,
the time span is from September to October 2018, and (2) the
dataset in Shenzhen, China, the time span is from April to May
2018. Some of the records in the datasets are listed in Table 2. All
the datasets were downloaded from https://outreach.didichuxing.
com.

Considering that each road segment has different character-
istics including length, number of lanes, speed limitation, and
geographic location, the traffic index is a standardized quantita-
tive indicator to measure traffic congestion. The traffic index can
be expressed as follows:

C t
i =

vmax
i − vt

i
max min , (14)
vi − vi

https://outreach.didichuxing.com
https://outreach.didichuxing.com
https://outreach.didichuxing.com


G. Shen, D. Zhu, J. Chen et al. Knowledge-Based Systems 250 (2022) 109035

F

w

B
B
s
n
s
f
a

4

b
i

4

a
t
m
d

4

4
t
F
t
m
r

Table 3
Statistics of road networks, where |V | and |E| denote the number
of nodes and edges, respectively.
Dataset |V | |E| Attribute Cluster

Chengdu 74 164 1776 7
Shenzhen 79 157 1896 8

where C t
i is the traffic index of road segment i during timeslot t ,

vt
i is the average speed, vmax

i and vmin
i are the maximum and min-

imum speeds corresponding to road segment i in the historical
dataset, respectively. The lower the average speed, the larger the
traffic index and the more congested the traffic, and vice versa.

From the perspective of traffic congestion, most of the time
on a road is smooth, and congestion generally occurs only during
the morning and evening rush hours. For fine-grained traffic
congestion, two datasets were filtered in rush hours (7 am–9 am
and 5 pm-−7 pm), and aggregated into 24 timeslots (10-min.
intervals per day). 74 segments in Chengdu and 79 segments
in Shenzhen each comprised the road network. Road segments
were selected as networked nodes, in which the traffic index at
different timeslots was selected as the node features. To meet
the requirements of testing, the two datasets were grouped into
more clusters empirically, and the information is summarized in
Table 3.

Therefore, the node feature matrix in the Chengdu road net-
work F c ∈ R74d×24 and that in the Shenzhen road network F s ∈
R79d×24 are generated. Notably, d is the number of days in each
dataset.

All experiments are compiled and tested based on Python 3.8
and TensorFlow 2.7.0.

4.2. Experimental settings

4.2.1. Baselines
The proposed method was compared with state-of-the-art

methods for traffic pattern clustering.

• ARGE [41]: This is an adversarially regularized graph au-
toencoder for graph clustering with both node features and
topology.

• ARVGE [41]: This is an adversarially regularized variational
graph autoencoder for graph clustering with both topologi-
cal and content information.

• GK-means [42]: This is a graph k-means framework that in-
tegrates node and feature information in SMNs and explores
the evolution of the opinion matrix.

• EGAE-JOCAS [43]: This is an embedding graph autoencoder
with joint clustering via adjacency sharing that utilizes node
attributes and adjacency to generate adequate representa-
tions for joint clustering.

• PCMAN: The proposed method defines the weighted ma-
trix of adjacent segments by motifs and uses attributed
networks to discover traffic patterns.

• PCAN: This is a comparison for PCMAN, which uses at-
tributed networks to discover traffic patterns.

4.2.2. Evaluation metrics
Three widely used performance measures were employed to

evaluate performance: clustering accuracy (Acc), normalized mu-
tual information (NMI), and macro F1-score (F1). A better result
should lead to higher values for all metrics.

Acc =
∑r

i=1 δ(ai,map(bi)) (15)

r

7

NMI =
I(A, B)
√
H(A)H(B)

(16)

1 =
2
s

s∑
j=1

Pj × Rj

Pj + Rj
(17)

Pj =
TPj

TPj + FPj
(18)

Rj =
TPj

TPj + FNj
, (19)

here A and B are the clustered results and ground truths, re-
spectively; ai and bi are the individuals corresponding to A and B,
respectively; δ(x, y) = 1 if x = y, otherwise δ(x, y) = 0; map(bi)
is the best mapping function that permutes clustering labels to
match ground truths; H(A) and H(B) are the entropies of A and
, respectively; I(A, B) is the mutual information between A and
; TP stands for the true value of the positive sample being the
ame as the predicted value, FP stands for the true value of the
egative sample being the same as the predicted value, and FN
tands for the true value of the negative sample being different
rom the predicted value; r and s are the number of clustering
nd classes, respectively.

.2.3. Parameter selection
According to Eq. (6), parameter α determines the tradeoff

etween the topological structure and node features. The PCMAN
s trained using parameter α ranging from 0.01 to 0.05.

.3. Results

The proposed PCMAN method is compared with state-of-the-
rt methods. These comparisons belong to two categories of
asks: different parameters of the PCMAN and other compared
ethods. For a fair comparison, these methods were tested under
ifferent numbers of clusters.

.3.1. Parametric study
According to Fig. 6(a) - Fig. 6(c), as the cluster number K ≤

, PCMAN achieves the best performance when α is 0.03, and
he best performance is achieved when α is 0.04. According to
ig. 6(d) - Fig. 6(f), as the cluster number K ≤ 5, PCMAN achieves
he best performance when α is 0.03; By contrary, the best perfor-
ance is achieved when α is 0.04. A possible explanation for this

esult could be that: as the value of K decreases, PCMAN reaches a
good balance between the topological structure and node features
when α is 0.03. As the value of K increases, PCMAN achieves
a tradeoff among the various attributed road networks when α
is 0.04. Therefore, in a subsequent study, the best performance
of the PCMAN was provided according to the aforementioned
parameter selection.

4.3.2. Comparative results on baselines
Tables 4–9 show the evaluation results for the Chengdu and

Shenzhen datasets. For each compared method on all three eval-
uation metrics, the final performance scores (avg.) were obtained
by averaging the scores of different clusters. The experimental
results are summarized as follows:

• The proposed PCMAN method outperformed the compared
methods in all cases. The overall performance ranking of
these methods on the two datasets was PCMAN, GK-means,
EGAE-JOCAS, ARVGE, PCAN, and ARGE. On the Chengdu
dataset, compared with the second best method, that is,
GK-means, PCMAN achieves 3.1%, 12.4%, and 5.3% improve-
ments in Acc, NMI, and F1, respectively. In contrast to GK-
means on the Shenzhen dataset, PCMAN achieves 4.3%, 8.5%,
and 3.9% improvements in Acc, NMI, and F1, respectively.
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s

Fig. 6. Performance of PCMAN with combinations of α and K values. (a)-(c) show the performance of Acc, NMI, and F1 on the Chengdu dataset, respectively. (e)-(f)
how the performance of Acc, NMI, and F1 on the Shenzhen dataset, respectively.
Table 4
Clustering performance on the Chengdu dataset (Acc). Bold is used to highlight the best result.
K 2 3 4 5 6 7 avg.

ARGE 0.4922 0.4782 0.4264 0.3651 0.3638 0.2493 0.3959
ARVGE 0.5663 0.4441 0.4301 0.3583 0.3965 0.3297 0.4209
GK-means 0.5594 0.5350 0.4482 0.4003 0.4396 0.4331 0.4693
EGAE-JOCAS 0.5045 0.4556 0.4411 0.3679 0.4182 0.3949 0.4304
PCAN 0.4214 0.4686 0.4618 0.4491 0.3680 0.3520 0.4202
PCMAN 0.5052 0.5136 0.5269 0.4928 0.4515 0.4124 0.4838
8
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Table 5
Clustering performance on the Chengdu dataset (NMI). Bold is used to highlight the best result.
K 2 3 4 5 6 7 avg.

ARGE 0.1106 0.1169 0.0923 0.1254 0.1437 0.1406 0.1216
ARVGE 0.1244 0.1162 0.0919 0.1297 0.1776 0.1759 0.1360
GK-means 0.1438 0.1312 0.1669 0.1606 0.1254 0.1419 0.1450
EGAE-JOCAS 0.1120 0.1414 0.1429 0.1321 0.1237 0.1274 0.1299
PCAN 0.1225 0.1291 0.1551 0.1328 0.1416 0.1534 0.1391
PCMAN 0.1309 0.1496 0.1790 0.1864 0.1820 0.1501 0.1630
Table 6
Clustering performance on the Chengdu dataset (F1). Bold is used to highlight the best result.
K 2 3 4 5 6 7 avg.

ARGE 0.3601 0.2895 0.2261 0.2367 0.2297 0.1815 0.2162
ARVGE 0.3656 0.2659 0.2727 0.2426 0.1955 0.2172 0.2599
GK-means 0.3873 0.3004 0.2683 0.2988 0.2169 0.2467 0.2864
EGAE-JOCAS 0.3509 0.2554 0.3155 0.2975 0.2202 0.2313 0.2785
PCAN 0.3183 0.3337 0.2899 0.2251 0.1715 0.2116 0.2584
PCMAN 0.4009 0.2809 0.3399 0.3190 0.2395 0.2297 0.3017
Table 7
Clustering performance on the Shenzhen dataset (Acc). Bold is used to highlight the best result.
K 2 3 4 5 6 7 8 avg.

ARGE 0.5191 0.4043 0.3574 0.2638 0.2340 0.2723 0.2149 0.3237
ARVGE 0.5279 0.5457 0.4787 0.4191 0.4745 0.4191 0.3957 0.4658
GK-means 0.5962 0.6287 0.5135 0.4403 0.4333 0.4743 0.4278 0.5020
EGAE-JOCAS 0.5407 0.5477 0.5011 0.4513 0.4265 0.4513 0.3899 0.4722
PCAN 0.5435 0.4785 0.4156 0.4392 0.4076 0.4236 0.3899 0.4426
PCMAN 0.5781 0.5928 0.5591 0.5043 0.4806 0.5335 0.4167 0.5236
Table 8
Clustering performance on the Shenzhen dataset (NMI). Bold is used to highlight the best result.
K 2 3 4 5 6 7 8 avg.

ARGE 0.1184 0.1165 0.1176 0.1136 0.1222 0.1509 0.1648 0.1291
ARVGE 0.1434 0.1132 0.1298 0.1149 0.1754 0.1628 0.1825 0.1460
GK-means 0.1197 0.1089 0.1151 0.1913 0.1905 0.2280 0.1878 0.1630
EGAE-JOCAS 0.1210 0.1452 0.1524 0.1503 0.1562 0.1624 0.1555 0.1490
PCAN 0.1163 0.1331 0.1328 0.1631 0.1178 0.1370 0.1371 0.1339
PCMAN 0.1260 0.1342 0.1855 0.2266 0.2014 0.1833 0.1815 0.1769
Table 9
Clustering performance on the Shenzhen dataset (F1). Bold is used to highlight the best result.
K 2 3 4 5 6 7 8 avg.

ARGE 0.4189 0.3835 0.2796 0.2387 0.2816 0.2465 0.2251 0.2963
ARVGE 0.4146 0.4060 0.3376 0.3155 0.3265 0.2653 0.2836 0.3356
GK-means 0.4463 0.4641 0.4198 0.3786 0.3674 0.2810 0.2878 0.3779
EGAE-JOCAS 0.4101 0.4477 0.4385 0.3523 0.3377 0.2764 0.3226 0.3693
PCAN 0.3923 0.4098 0.3909 0.3312 0.3266 0.2881 0.2749 0.3448
PCMAN 0.4117 0.4558 0.4752 0.3903 0.3686 0.3431 0.3043 0.3927
• The superiority of PCMAN in most cases is more pronounced
when the cluster number K is four or five. One possible
reason is that the traffic states are categorized into four
classes by the traffic index, that is, the smooth state, lightly
congested state, moderately congested state, and heavily
congested state, and the cluster number K conforms to the
distribution of traffic flow results in different traffic states.

In terms of the advantages of the compared methods, ARGE
nd ARVGE leverage the topological structure and node features
o construct a graph convolutional network, and ARVGE showed
etter performance than ARGE. This is because ARVGE employs
variational graph autoencoder in the upper tier. EGAE-JOCAS
ombines relaxed k-means and spectral clustering to generate
referable embeddings and shares the same adjacency within the
raph convolution layers; thus it has an improved performance
ompared with ARVGE. GK-means employs the idea of dynamic
ame theory to optimize the local community structure and is de-
ived from a continuously nonnegative convex function to explore
9

the evolution of the opinion matrix. GK-means has a stronger
ability for adversarial learning; therefore, it performs better than
the aforementioned three methods.

All the methods adopt the topological structure and node
features to improve clustering performance, in which PCMAN
is higher than the other five methods concerning the following
metrics:

• NMF projects large collections of multi-dimensional traffic
data into low-dimensional representations; thus, PCMAN
integrates the structure and attribute information of road
networks to obtain a better joint relationship through NMF.
Thus, NMF can be applied to traffic pattern clustering when
traffic data need to exhibit high degrees of tightness be-
tween structure and attribute information.

• The PCMAN utilizes motifs to capture global information and
extract higher-order spatial correlations of node features in
road networks. The PCMAN significantly outperformed the
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Table 10
Example of clustered results generated from PCMAN.
Segment ID Time Clustered result Ground

2271 2018-09-01 2 2
2271 2018-09-02 1 1
2271 2018-09-03 2 1
2271 2018-09-04 2 2
... ... ... ...
2271 2018-09-08 1 1
2271 2018-09-09 1 2
2271 2018-09-10 3 3

Fig. 7. Topology structure of the Chengdu road network.

compared PCAN method. This indicates that the application
of motifs in road networks is feasible and effective.

• By converting the feature matrix into a feature similarity
matrix, PCMAN alleviates the heterogeneity between the
structure and attribute information of road networks, min-
imizes the difference between the clustered results and the
ground truth, and thereby improves the clustering perfor-
mance.

The clustered results generated from PCMAN are partially
hown in Table 10.

.4. Analysis

Based on the experimental results, an in-depth traffic pattern
nalysis of four periods was conducted in the Chengdu road
etwork.
The Chengdu road network is located at 30.66◦N ∼ 30.73◦N,

04.02◦E ∼ 104.10◦E. Fig. 7 represents the network topology,
nd the region marked by a solid red line with a single arrow is
ne of the congested areas. To analyze the traffic patterns more
eaningfully, 12 segments in the region were used as evaluation
bjects.
Traffic flow patterns reveal a significant similarity between

ays with the same date attributes [58]; four periods of pat-
ern clustering in different segments of the road networks are
dopted: the first and last weekdays, other weekdays, weekends,
nd holidays. According to the four periods, the common basis
atrix B is categorized into four classes and then re-outputs the
lustered results.
Under normal circumstances, the cluster number of traffic

tates K is optimally determined by the silhouette measure [59],
nd clustered results are obtained according to the K value.
10
The average of the silhouette measures of road network nodes
S̄K is expressed as follows:

S̄K =
1
m

m∑
a=1

Sil(a), (20)

where Sil(a) is the silhouette measure of sample Aa and m is the
number of road network nodes.

According to the silhouette measure, Fig. 8 indicates that:
whether it is morning rush hours or evening rush hours, the Sil
of the first and last weekdays reaches the highest value when
K is five, and the Sil of the other three periods reaches the
highest value when K is four. A possible explanation for this
may be that there was a heavy flow of commuters on weekdays,
whereas people traveled relatively less on non-weekdays and
traffic congestion weakened. In terms of weekdays, traffic jams
have become a universal phenomenon during rush hours, and
the first and last weekdays will be less deterministic than other
weekdays.

According to the best K value in Fig. 8, the pattern similarity is
discussed for four periods. In Figs. 9–10, each cluster is associated
with a pattern for the probability of traffic states at each road
segment. In other words, in four periods, the traffic pattern for
each road segment comprises several probabilities of traffic states
during morning or evening rush hours.

As it can be observed from Figs. 9–10, the pattern similarity
of different segments exists in each period. For example, the pat-
terns of segments 2011 and 1874 in morning rush hours on the
first and last weekdays, and the patterns of segments 2013 and
1873 in evening rush hours on holidays are similar. Furthermore,
the patterns of segments 3520 and 1873 in the cases of morning
rush hours on the first and last weekdays, morning rush hours
on weekends, and evening rush hours on other weekdays are
similar. When observing closely at the locations of segments 3520
and 1873 (Section of North Station West 2nd Road and North
Section of the 1st Ring Road), it is found that they are located
close to the Chengdu Railway Middle School. Accordingly, the
pattern similarity between these two segments may be linked to
the school timetable.

When the patterns of these segments are similar in the morn-
ing or evening rush hours of the same period, traffic management
agencies will set up the corresponding control strategies to reg-
ulate the traffic flow of these similar segments, and prevent the
anticipated traffic congestion.

The analysis can provide an improved scheme for urban com-
muters to understand traffic patterns in road networks, and clar-
ify where imbalances would occur during morning or evening
rush hours in four periods.

5. Conclusion

In this paper, a traffic pattern clustering method (PCMAN)
is proposed that utilizes motif-based attributed road networks.
It incorporates NMF and motifs to address (1) the issue of low
accuracy owing to the heterogeneity of the structure and at-
tribute information and (2) the issue of lower-order connectivity
of road network structures. Specifically, a higher-order connectiv-
ity model is designed to capture the global information of road
networks using motif search and IAMS representation. PCMAN
then factorizes the motif-based weighted matrix and node feature
similarity matrix by considering the Karush–Kuhn–Tucker condi-
tion optimization and utilizes the k-means algorithm to obtain
clustered results. Experiments were performed on two real-world
datasets considering four periods, with morning rush hours from
7:00 to 9:00 am and evening rush hours from 5:00 to 7:00 pm.
The results indicated that the performance of the PCMAN is supe-
rior to that of other state-of-the-art methods, and the superiority
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Fig. 8. Silhouette of four periods in morning rush hours (a) and evening rush hours (b).
Fig. 9. Pattern of the first and last weekdays (a), other weekdays (b), weekends (c), and holidays (d) in morning rush hours.
f the PCMAN in most cases is more significant when the cluster
umber K is four or five. Moreover, in the Chengdu road network,
he PCMAN is capable of providing insights into the pattern
imilarity of road segments; for example, the pattern similarity
etween segments 3520 and 1873 might be linked to the school
imetable. The analysis helps urban commuters to better manage
ransportation modes and alleviate traffic congestion.

The proposed PCMAN method quantitatively evaluated the
raffic characteristics and results limited by empirical informa-
ion sources. Moreover, due to the complexity of heterogeneous
nformation associated with multi-typed components, it is lack
11
of analyzing the heterogeneity of the structure and attribute
information using only traffic index. Future research should fo-
cus on overcoming the difficulties of evaluation. It is necessary
to use a unified standard to improve the effect of the PCMAN
and compare it with other methods. Besides, the attributed road
network with more types of node features (traffic flow, aver-
age speed, etc.) should be discussed especially those contains
continuous attributes. In addition, the application of attributed
networks deepens in the proposed method, and it will handle
other tasks in ITS, such as traffic prediction and causal discovery
of the congestion propagation patterns.
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Fig. 10. Pattern of the first and last weekdays (a), other weekdays (b), weekends (c), and holidays (d) in evening rush hours.
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