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Abstract— Recently, convolution neural network (CNN)-based
hyperspectral image (HSI) classification has enjoyed high popu-
larity due to its appealing performance. However, using 2-D or
3-D convolution in a standalone mode may be suboptimal in real
applications. On the one hand, the 2-D convolution overlooks the
spectral information in extracting feature maps. On the other
hand, the 3-D convolution suffers from heavy computation in
practice and seems to perform poorly in scenarios having anal-
ogous textures along with consecutive spectral bands. To solve
these problems, we propose a mixed CNN with covariance pooling
for HSI classification. Specifically, our network architecture starts
with spectral-spatial 3-D convolutions that followed by a spatial
2-D convolution. Through this mixture operation, we fuse the
feature maps generated by 3-D convolutions along the spectral
bands for providing complementary information and reducing
the dimension of channels. In addition, the covariance pooling
technique is adopted to fully extract the second-order infor-
mation from spectral-spatial feature maps. Motivated by the
channel-wise attention mechanism, we further propose two prin-
cipal component analysis (PCA)-involved strategies, channel-wise
shift and channel-wise weighting, to highlight the importance
of different spectral bands and recalibrate channel-wise feature
response, which can effectively improve the classification accu-
racy and stability, especially in the case of limited sample size.
To verify the effectiveness of the proposed model, we conduct clas-
sification experiments on three well-known HSI data sets, Indian
Pines, University of Pavia, and Salinas Scene. The experimental
results show that our proposal, although with less parameters,
achieves better accuracy than other state-of-the-art methods.

Index Terms— Channel-wise shift, channel-wise weighting,
convolutional neural network (CNN), covariance pooling, hyper-
spectral image (HSI) classification, principal component analysis
(PCA).

I. INTRODUCTION

YPERSPECTRAL image (HSI) classification, as an
important part of earth observation, is widely used
in fine agriculture [1]-[3], military [4]-[6], environmen-
tal monitoring [7]-[9], and other aspects. HSI can obtain
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spectral information from hundreds of continuous spectrum
segments of surface objects. With the rapid development of
remote-sensing technology, the spatial resolution has also been
greatly improved, which vastly enhances the ability for HSI
data sets to properly express different objects.

In HSI classification tasks, there exist three main challenges:
first, the spectral dimension of hyperspectral data has hundreds
of band values and the information between the spectral bands
is frequently redundant, which results in high data dimen-
sion and requires a lot of computing consumption. Second,
the existence of mixed pixels brings a lot of interference to the
classification of HSIs, since that one pixel often corresponds
to multiple object categories and is mostly easy to cause
misclassification. Third, HSI samples are expensive to label
manually, resulting in relatively small amount of off-the-shelf
labeled samples. To remedy all these problems, many related
methods have been presented in the past decade.

Early machine learning algorithms, such as support vector
machine (SVM) [10], k-nearest neighbor (K-NN) [11], deci-
sion trees [12], and extreme learning machine (ELM) [13],
rely only on spectral features of HSIs without considering
spatial information, and often lead to unsatisfactory results.
In addition, some classification methods that based on design-
ing effective feature extraction or dimensionality reduction
techniques have also been proposed, such as principal com-
ponent analysis (PCA) [14], independent component analysis
(ICA) [15], and linear discriminant analysis (LDA) [16]. How-
ever, the feature maps generated without incorporating spatial
contextual information are not reasonable either. Hence, more
and more spectral-spatial feature extraction methods [13],
[17]-[22] have been proposed to improve the representation
of hyperspectral data and increase the classification accuracy,
for example, Markov random filed [19], sparse representa-
tion [20], metric learning [21], and composite kernels [13],
[22], to name just a few.

Recently, the study of HSI classification is seeing a par-
adigm shift, as deep-learning-based methods push aside the
traditional models. For instance, stacked autoencoder (SAE)
and deep belief network (DBN) have been widely used in
this field. In [23], SAE is introduced for the first time
for classification of hyperspectral satellite images. In [24],
an efficient stacked discriminative sparse autoencoder is devel-
oped for the land-use classification task. Li et al. [25] and
Peng et al. [26] investigated the strength of DBN-based model
in obtaining deep spectral feature maps, which allows unsu-
pervised pretraining over unlabeled samples in the first step
and followed by a supervised fine-tuning over labeled samples.
In the meanwhile, Ping et al. [27] diversified the DBN model
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through regularizing the pretraining and fine-tuning steps,
which guarantees the optimal classification results and gains
better performances when compared with the original DBNs.
However, both SAEs and DBNs belong to the fully connected
networks, which not only contain larger number of parameters
to train, but also suffer from spatial information loss due to
their requirement of one-dimensional input form.

Inspired by the intrinsic structure of the visual
system, the introduction of convolution neural network
(CNN) [28]-[31] has extensively promoted the development
of deep learning, and the CNN-based networks have made a
major breakthrough in classification accuracy. Compared with
a fully connected network, CNNs take advantage of local
connections and shared parameters to extract the contextual
2-D spatial features. Li et al. [32] fed paired samples with
new labels into deep CNN to extract pixel-pair features,
leading to rich discriminative spectral features. In addition,
Yang et al. [33] applied two channels of CNN to separately
extract spatial and spectral features for HIS classification.
Due to the fact that HSI is a cubic data, it can be naturally
considered as a 3-D tensor, thus using 3-D-kernels to extract
spectral-spatial features is an intuitive scheme. For example,
in [30], a multiscale 3-D deep CNN is proposed, which
could jointly learn both 2-D multi-scale spatial feature and
1-D spectral feature without any hand-crafted features or
pre/post-processing steps. Zhong et al. [31] exploited each
3-D convolutional layer following residual blocks to learn
more discriminative spectral and spatial representations of
HSIs separately, and used batch normalization to regularize
the learning process. In terms of both efficacy and efficiency,
it is well known that a shallow 3-D-CNN often performs
poorly for targets having very similar textures along successive
spectral bands and a deep 3-D-CNN may be computationally
unaffordable.

Motivated by the aforementioned works, in this article,
we tackle the HSI classification problem by taking the char-
acteristics of mixed convolution architecture and covariance
pooling into account, which leads to a well-balanced result
between computational cost and classification accuracy. More-
over, we propose two PCA-involved attention mechanisms for
better performance, especially in the case of limited sample
size. The main contributions of our work are listed as follows.

1) We propose an end-to-end network model that embeds
the consecutive 3-D-2-D convolutions and covariance
pooling into the traditional CNN architecture for HSI
classification. The mixed use of 2-D and 3-D convo-
lutions can extract more discriminative spectral—spatial
features, in which the 2-D operation are added to fuse the
spectral feature maps obtained by 3-D convolutions and
reduce the dimension of channels. In addition, covari-
ance pooling can extract more significant second-order
information from spectral—spatial features than ordinary
pooling methods.

2) Motivated by channel-wise attention mechanism,
we propose two schemes, channel-wise shift and
channel-wise weighting, to recalibrate channel-wise
feature response by emphasizing more informative
spectral bands and curbing the effects of useless ones.
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Fig. 1. Models of 2-D and 3-D convolutions. (a) 2-D output is generated
by applying 2-D convolution on the HSI. (b) 3-D convolution obtains a 3-D
output that remains spectral information.

Specifically, these two schemes are used between

PCA-involved layer and the first 3-D convolution layer.

The rest of this article is organized as follows. Section II

gives a brief review of related work. Section III describes the

details of our proposed classification framework. The com-

prehensive experiments are conducted in Section IV. Finally,
the conclusion is drawn in Section V.

II. RELATED WORK
A. 2-D and 3-D Convolutions

There are generally two patterns, 2-D-CNN and 3-D-CNN,
for common convolution neural networks. An illustration
of 2-D and 3-D convolution for hyperspectral data is shown
in Fig. 1 and the formulations for 2-D and 3-D convolution
are given in the following equations:

w

h
y (x+p)(y+q)
I =@ 220 D wln fT) + b

m  p=1 g=1

it =l 2200 > wi

where £} means the output variable at position (x, y,z)
in the jth feature map in the ith layer, ® is the activation
function, (& x w x d) are the size of kernel, (p, g, r) represent
the indexes of kernel, and m is the index of feature maps. Two
parameters, the kernel weight w and the bias b, need to be
given beforehand for training the network.

From Fig. 1, we can observe that the 2-D convolution oper-
ation focuses on extracting hyperspectral data by considering
only the spatial correlation of each channel in the given image.
As for the 3-D convolution operation, the correlation between
different channels is also used to improve the ability of feature
representation by obtaining the spectral-spatial feature maps.
In other words, the 2-D convolution can extract the spatial
features but fails to obtain the significant features in successive
spectral bands, while the 3-D convolution is able to extract
spectral-spatial features with sacrifice of more computational
cost. Therefore, using 2-D convolution or 3-D convolution in
a standalone mode is not the best option.

(1

(e+p) (y+q) (z+r)
(i—1ym + bij

)

B. Feature Extraction and Pooling Strategy

In practice, various atmospheric scattering conditions and
intraclass differences make the feature extraction of hyperspec-
tral data very difficult. To solve this issue, deeper architecture
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Fig. 2. Architecture of the proposed MCNN-CP Model. PCA involved channel-wise shift and channel-wise weighting are firstly used to reduce the dimension
of the original HSI. Then, mixed use of 3-D and 2-D convolutions with covariance pooling is proposed for HSI classification.

is considered as a promising option since it may learn more
abstract features at higher levels. However, a deep 3-D-CNN is
often computationally unaffordable. Hence, the PCA algorithm
is widely used for highlighting the main features of input
data and also for better efficiency. In [34]-[36], before using
CNN to gain the discriminative features, PCA is first adopted
to reduce the dimensionality of the original data, whose
experimental results verify that this scheme can improve the
accuracy and efficiency of classification.

For common CNNs, typical max or average pooling strate-
gies are always added to capture the first-order statistics.
Recently, some high-order statistics were proved to achieve
impressive improvement by obtaining a more significant and
compact representation [37]-[39]. Lin et al. [40] developed a
bilinear pooling network that consists of two feature extractors.
The bilinear form simplifies the gradient computation and
allows end-to-end training, which is particularly useful for
fine-grained categorization. In addition, second-order pooling
such as covariance pooling based on 2-D statistics were
proposed and widely used. He et al. [41], [42] used this
covariance matrix obtained by covariance pooling to generate
several stacked features from different convolutional layers.
Each element of this matrix stands for the covariance between
two contributed feature maps and further provides more com-
plementary information.

C. Effective Receptive Fields

It is well known that receptive fields are very important for
convolutional neural networks, especially in object detection
and instance segmentation [43], [44]. Luo et al. [45] proved
that during the feature extraction of 2-D or higher dimensional
data, only a small proportion of pixels in the theoretical
receptive fields contribute significantly to an output unit’s
response, and thus the concept of effective receptive fields
was proposed.

In many cases, the effective receptive fields always show a
Gaussian distribution. For example, in 2-D space, the effective
receptive fields of each convolutional layer are a small area
outward from the center point, occupying only a fraction
of the theoretical receptive fields. Moreover, its effect on
the output appears to rapidly decay from center to edge.

By visualizing the effective receptive fields and calculating
the gradient of the output units with respect to the sampling
locations, Zhu et al. [44] proved that during forward propaga-
tion, the pixels closer to the center of the receptive field are
convolved with more times, which deliver information through
many different paths to the output. On the contrary, the pixels
near the edge may be convolved with fewer times, which
have very few paths to propagate their impact. In the process
of back propagation, since the gradients from an output unit
are propagated across all paths, the center pixels will obtain
larger gradients than the edge points. To remedy these issues,
padding with zeros is an effective method to assure that all
pixels can be treated equally.

However, in the process of tensor data, due to the limitation
of the great amount of parameters and the high computational
cost, the padding with zeros operation is seldom used for pro-
moting equal attention to each pixel. Instead, we focus more on
discarding the dross and selecting the essence. For example,
in [46], a squeeze-and-excitation block is built to highlight
the importance of informative channels and suppress channels
with little information, which recalibrates feature maps and
improves the final categorization accuracy. Therefore, how to
use the characteristics of the effective receptive fields becomes
very important to obtain more valid information during the
convolution process.

III. METHODOLOGY

In this section, we present our classification framework
termed as mixed use of 3-D and 2-D CNN with covari-
ance pooling (MCNN-CP). As shown in Fig. 2, our method
mainly consists of four steps. For any given data, we first
use PCA to remove the spectral redundancy along spectral
bands and apply one of the two operations, channel-wise shift
and channel-wise weighting, to highlight the spectral bands
containing more information. Then, for each neighboring
cube, we exploit mixed use of 3-D and 2-D convolution to
extract spectral-spatial features followed by reshaping tensor
to matrix form along with the spectral bands. Consequently,
a covariance pooling layer is appended to aggregate the
obtained spectral-spatial feature maps. Finally, the output is
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sent to three fully connected layers to derive the classification
result.

A. PCA and Its Ranking Essence

Similar to [21], [47], and [48], we adopt the PCA step in our
framework. The role of PCA lies in reducing the dimension
along the spectral bands and holding the spatial information
intact. Specifically, PCA obtains a more compact matrix by
first forming the covariance matrix B of the input data X and
then selecting k eigenvectors corresponding to the largest k
eigenvalues, and the feature vectors are used as the column
vectors to obtain the optimal projection matrix P. For the
input HSI data with size W x H x L, we should first reshape
it into X € RY*N with N = W x H and then introduce the
cost function of PCA as follows:

1
mintr(P"BP), st. PTP=1B=—XX" 3)
P L

where [ is an identity matrix with appropriate size, tr and
T represent the trace and transpose operations, respectively.
When P € RE*K is achieved, the output of PCA would be
Y = PT x X € RPN, whose spectral dimension is reduced
from the original L to k.

As stated previously, PCA pursues to maintain the most
intrinsic information with reduced dimensional space. In fact,
it measures the importance of each direction by comparing
the magnitude of the data variance in the projection space.
As it is well known, the larger the data variance, the greater
the amount of information contained. Hence, we can assert
that the carried information of spectral bands is in descending
order after the PCA step, in which the more informative bands
would contribute more to the subsequent feature extraction
process. That is to say, we can determine the relatively more
important spectral bands by relying on the characteristics of
ranking essence of PCA.

B. 3-D-2-D Convolutions and Their Margin Effect

In practice, a shallow 3-D-CNN is hardly to achieve satis-
factory spectral—spatial features and a deep 3-D-CNN is often
computationally unaffordable. Hence, it is necessary to study
certain sound ways for a well balance between these two
operations.

To extract more expressive and discriminative feature maps,
we propose a mixed use of 3-D and 2-D convolutions with
small kernels. As shown in Fig. 2, we first employ three
3-D convolution layers to gain the spectral-spatial feature
maps. The 3-D convolution kernels are set to 8 x 3 x 3 x 7,
16 x 3 x 3 x5, and 32 x 3 x 3 x 3, respectively, where 8 x
3 x 3 x 7 means eight 3-D convolution kernels with dimension
3x3x7. Then, we reshape the output (four dimensions tensor)
into three dimensions by concatenating the third and fourth
dimensions. Finally, we use one 2-D convolution layer with a
3 x 3 convolution kernel to fuse spectral bands and reduce the
number of spectral dimension. As is known to all, the feature
maps generated by 3-D convolution have different character-
istics, so the fusion by 2-D convolution operation would help
improve the accuracy of HSIs classification by involving more
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(@ (b)

Fig. 3. (a) Model of 3-D convolution along the spectral dimension. The black
square frames stand for the spectral bands, the gray frames represent the filters,
and the red frames are the filters across the spectral bands. (b) Scheme of
padding channels with zeros.

complementary information. Evidently, the mixed use of 3-D
and 2-D convolution can fully utilize both the spectral as well
as spatial feature information to obtain more discriminative
features.

It is noted that in the traditional 2-D convolution process,
there are edge effects where the intermediate pixels play a
more considerable role than the edge pixels, and this problem
also exists on the 3-D convolution along channels. Fig. 3(a)
shows the typical 3-D convolution process, we can observe
that for the most left and right marginal spectral bands, less
2-D convolution operations will be covered when only one
3-D-kernel is moving along their surface. Whereas, the rela-
tively middle spectral bands would receive as many 2-D convo-
lutions as the size of 3-D-kernel’s third dimension. Concretely,
the first spectral band has only one 2-D-kernel to extract
the spatial feature in 3-D convolution, the second has two
2-D-kernels, the third has three 2-D-kernels, and so on, until
the dth spectral band that will involve the maximum kernels.
It is noted that in the traditional 2-D convolution process, for
the sake of keeping the output image size unchanged while
retaining more useful information, we usually pad the input
image with zeros enlarging its all-round dimensions. Similarly,
the third dimension of HSI data can also be enlarged during
3-D convolution, as shown in Fig. 3(b), so that more 2-D
operations can be performed and each band can be situated
in effective receptive field to preserve more information along
the spectral bands. For this margin effect of 3-D convolution,
the informative channels should be migrated to the middle of
effective receptive fields.

C. Channel-Wise Shift and Channel-Wise Weighting

Based on the ranking essence of PCA and the margin
effect of 3-D convolution, we propose two schemes, namely
channel-wise shift and channel-wise weighting, which are used
between the PCA step and the first 3-D convolution layer to
enhance feature extraction capabilities and improve classifica-
tion accuracy by emphasizing more informative spectral bands
and suppressing less useful ones.

The channel-wise shift scheme is illustrated in Fig. 4, our
core idea is to move the relatively more important spectral
bands to the more central position for the most sufficient
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Fig. 4. Scheme of channel-wise shift. The deeper color denotes the more
information in the spectral band.

3-D convolutions. To the contrary, the relatively less important
spectral bands should be placed on the marginal place for
slightly information retrieval and computational saving. This
strategy can increase the number of spatial feature extraction
times for informative channels and keep them in the center of
the effective receptive fields. By this operation, we can assure
that the important spectral bands would be kept in the middle
of all the channels to involve more 3-D convolution operations.

The channel-wise weighting scheme is to penalize a pre-
defined weight, namely 1 + Ratio, for each channel, where
Ratio represents the proportion of the variance value of each
principal component to the total variance value. Compared
with the channel-wise attention mechanism, this scheme will
not increase any cost since that the Ratio is directly generated
by the PCA operation. It is intuitive that the larger the weight
is, the more important the corresponding component would
be, which can further reveal more spectral information in that
band. It is noted that directly weighting a ratio between 0 and 1
results in shrunken features, thus we simply use 1 + Ratio
to recalibrate channel-wise feature responses. Although other
functions, for example, Sigmoid Function, may make the
ratio smoother, our weight would avoid the feature shrink
but still highlight the difference. Through back propagation,
the informative channels will obtain a larger gradient ampli-
tude than others. It should be also noted that the amplified
difference would probably destroy the original correlation
between different spectral bands. Therefore, the channel-wise
weighting scheme is recommended only when the number of
samples is relatively small.

D. Covariance Pooling

As shown in Fig. 2, after all the feature extraction steps,
the output is a tensor M € R7*W*D We first reshape M into
matrix Z € RP*N with N = H x W. Then, we can formulate
the covariance matrix as follows:

N
C= %1 ;(zi —2)(@ —2)" eRP*P )

N
where z; € [z1, 22, ..., zn] is the ith column vector of Z along
the second dimension and 7z = (1/N) E,N:1 Z;.
Equation (4) is the second-order pooling for the stacked
matrix X. Following [49]-[51], we can achieve three distinc-
tive advantages by adopting covariance pooling to our network

framework. First, each off-diagonal entry of C can make
full use of the channel relationship to fuse complementary
information coming from different feature maps. Second,
we use the average operation in the process of covariance
computation, which will make it better to filter the noise of a
single sample. Third, since calculating the covariance between
all feature maps is independent of the order of the feature
maps, it is assumed that the covariance pooling is robust to
rotation. However, we can also know from the formula that
the computational load of the covariance pooling method is
proportional to the scale of the input. Therefore, to ensure that
the method is usable and significant, the appropriate input data
size should be set. This is another motivation for adding a 2-D
convolution layer to reduce the dimension of the feature maps.

In implementation, it has been proven in [52] that the
original covariance matrix lies on the Riemannian manifold
space, which may not suit for the subsequent Euclidean
classification. Fortunately, with a simple logarithm operation,
the covariance matrix would be transformed into the Euclidean
space without losing any geometric relationships. Specifically,
the pooled feature F can be formulated as

F = Ulog(2)UT € RP*P 3)

where C = UXUT, U and X are the eigenvector matrix
and eigenvalue matrix of C, respectively. Due to the fact that
matrix F is a symmetric matrix, we only need to vectorize
the upper triangle matrix of F for the final vector f with
dimension D(D + 1)/2.

IV. EXPERIMENTS

A. Data Description

To verify the practical performance of our MCNN-CP
method, we conduct several experiments on three representa-
tive databases, including Indian Pines (IP), University of Pavia
(UP), and Salinas Scene.

1) Indian Pines: The first data set is gathered by the AVIRIS
in 1992 from Northwest Indian, containing 16 classes and
having 145 x 145 spatial dimension with a resolution of 20 m
by pixels. The original data set contains 224 spectral bands
with the wavelength ranging from 400 to 2500 nm. The size of
training and test samples for each subclass is shown in Table I.

2) University of Pavia: The second data set is collected
by the ROSIS sensor in 2002 from Northern Italy, including
nine urban land-cover types and having 610 x 340 spatial
dimension with a resolution of 1.3 m by pixels. The original
data set contains 103 spectral bands with the wavelength
ranging from 430 to 860 nm. The size of training and test
samples for each subclass is listed in Table II.

3) Salinas Scene (SA): The third data set is acquired by
the AVIRIS sensor over Salinas Valley, California, and is
characterized by 3.7-m pixels spatial resolution. The area
covered comprises 512 lines by 217 samples and contains
16 classes. The original data set contains 224 spectral bands
with the wavelength ranging from 360 to 2500 nm. The
size of training and test samples for each subclass is shown
in Table III.
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TABLE I

SIZE OF TRAINING AND TEST SAMPLES FOR EACH
SUBCLASS IN THE IP DATA

No. Class Name Training  Test
1 Alfalfa 14 32
2 Corn-no till 428 1000
3 Corn-min till 249 581
4 Corn 71 166
5 Grass-pasture 145 338
6 Grass-trees 219 511
7 Grass-pasture-mowed 8 20
8 Hay-windrowed 143 335
9 Oats 6 14
10 Soybean-no till 292 680
11 Soybean-min till 736 1719
12 Soybean-clean 178 415
13 Wheat 62 143
14 Woods 379 886
15 Buildings-Grass-Trees-Drives 116 270
16 Stone-Steel-Towers 28 65

Total 3074 7175
TABLE II

SIZE OF TRAINING AND TEST SAMPLES FOR EACH
SUBCLASS IN THE UP DATA

No. Class Name Training Test
1 Asphalt 1989 4642
2 Meadows 428 13055
3 Gravel 630 1469
4 Trees 919 2145
5 Painted metal sheets 403 942
6 Bare Soil 1509 3520
7 Bitumen 399 931
8 Self-Blocking Bricks 1105 2577
9 Shadows 284 663

Total 12832 29944
TABLE III

SI1ZE OF TRAINING AND TEST SAMPLES FOR EACH
SUBCLASS IN THE SALINAS SCENE DATA

No. Class Name Training Test
1 Brocoli_green_weeds_1 603 1406
2 Brocoli_green_weeds_2 1118 2608
3 Fallow 593 1383
4 Fallow_rough_plow 418 976
5 Fallow_smooth 803 1875
6 Stubble 1188 2771
7 Celery 1074 2505
8 Grapes_untrained 3381 7890
9 Soil_vinyard_develop 1861 4342
10 Corn_senesced_green_weeds 983 2295
11 Lettuce_romaine_4wk 320 748
12 Lettuce_romaine_5wk 578 1349
13 Lettuce_romaine_6wk 275 641
14 Lettuce_romaine_7wk 321 749
15 Vinyard_untrained 2180 5088
16 Vinyard_vertical_trellis 542 1265

Total 16238 37891

The three selected data sets have their own characteristics:
IP has a large spectral length with a small spatial size, and UP
has a large spatial size with a small spectral length. For SA,
both of these two sizes are large. Such a choice covers three
different application scenarios and would be beneficial to the
verification of our model.
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TABLE IV

OA (%) OF DIFFERENT SPATIAL SIZES OF THE HSI SUBCUBE
UNDER 5% AND 30% TRAINING DATA

Spatial Size % 30%
P UP SA | 1P UP SA
FTx 20 9595 9890 99.77 | 9961 9995 99.08
23%23 9610 9887 9970 | 99.62 99.92 99.95
25x25 9629 9898 99.86 | 99.69 9993 100
27x 27 9597 9874 9978 | 99.55 99.56 99.99
20%29 9679 9856 9979 | 99.68 9971 99.98

B. Experimental Setup

To demonstrate the efficacy and the efficiency of our
proposed classification model, we choose several widely
used supervised methods as the competitors, including
SVM [10], 2-D-CNN [34], 3-D-CNN [53], M3D-CNN [30],
and SSRN [31]. For SVM, the penalty parameter and the
spread of the Gaussian kernel are, respectively, chosen from
two candidate sets {10~!, 1072, 1073} and {1, 10, 10, 10}
using a Grid Search method.

For the sake of fairness, we choose to use the same spatial
sizes of 25 x 25 pixels as inputs. The batch size, the learning
rate, and the number of training epochs are set to 256, 0.001,
and 100, respectively. For the last three layers of the fully
connected layers in our model, we use 256, 128, and 16 (cate-
gories) neural units, respectively. Moreover, we set the dropout
of the first and second layers to 0.4. All of the experiments are
conducted on a personal laptop with Intel i7-9750H 2.6-GHz
processor, 16-GB RAM, and an NVIDIA GTX1650 graphic
card. The used coding tool is Python 3.6 with Keras-2.2.4.

To reduce the influence of random initialization, we repeat-
edly run all the algorithms five times and then compute
the average results for the final report. Besides, to evaluate
the performance of different classification methods, the three
well-known numerical indexes, overall accuracy (OA), average
accuracy (AA), and Kappa Coefficient (Kappa), are adopted
to assess the classification results. OA represents the ratio
between the number of correctly classified samples to the
total test samples, AA represents the average of accuracies in
all classes, and Kappa is an available measure of agreement
between the ground truth map and classification map.

C. Parameter Analysis

In the proposed method, there are three important hyper-
parameters: the spatial size of each neighboring cube,
the reduced spectral dimension after PCA, and the dropout
proportions of the fully connected layers. To demonstrate their
individual role to the final accuracy, we perform HSI classifi-
cation with regarding to the variation of each hyperparameter
in this section.

First, by fixing the reduced spectral length and the dropout
ratio, we traverse the spatial size of input sub-cubes from five
candidate values {21 x 21, 23 x 23, 25 x 25, 27 x 27, and
29 x 29} to run our method. For each data set, we randomly
select 5% and 30% of data from each class as the training set,
and take the remaining samples as test groups. Table IV show
the OA results of the proposed method on three HSIs, we can
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Fig. 5.
(f) M3D-CNN. (g) SSRN. (h) MCNN-CP.

observe that the proposed method achieves the best OA when
the spatial size is set to be 25 x 25 in large probability.

Second, to determine the best subspace dimension in
PCA under the condition of fixed spatial size and dropout
proportion, we search for different & from a given set
{15, 20, 25, 30, 35, L}, where L means that the corresponding
experiments are conducted without using PCA. Table V lists
the OA results versus different spectral dimensions on three
data sets. From this table, we can see that among all the
subspace spectral bands, spectral length 35 is more suitable
for the IP and SA data sets, and spectral length 20 is more
appropriate for the UP data set. It is noted that the results
of our method without using PCA only occupy one best
value in all the cells, which verifies that PCA can reduce the
redundancy of spectral bands and obtain better performance
on average.

Third, we fix the other two hyperparameters and investigate
different dropout proportions from {0, 0.2,0.3,0.4,0.5} to
check the capacity of information capture. Dropout is used
to solve the overfitting phenomenon caused by insufficient
samples. The experimental results are listed in Table VI.
Taking into account all the classification results from different
data sets, we finally set the ratio to be 0.4 as the final
parameter.

D. Performance Comparison

In this section, we use four numerical indexes to report the
quantitative results acquired by all the competing methods on

Classification maps of the IP data using different models. (a) False color image. (b) Reference image. (c) SVM. (d) 2-D-CNN. (e) 3-D-CNN.

different data sets, including class-wise accuracy, OA, AA,
and Kappa. Table VII shows the accuracy on the IP data
and Table VIII are the results on the Salinas Scene data,
while Table IX reports the results on the UP data. From these
tables, we can observe that SVM achieves the lowest accuracy
and our proposed model occupies the first place among all
the competing approaches. From Table VIII, we can see that
2-D-CNN has better classification results than 3-D-CNN in the
Salinas Scene data. The reason is attributed to the redundancy
among many sub-classes, for example, Grapes-untrained and
Vinyard-untrained. In other words, the texture of these sub-
classes are very similar over most spectral bands. In addition,
the performance of SSRN is always higher than M3D-CNN.
The superiority of our model lies in the addition of a 2-D
convolution layer after all the three 3-D convolution layers,
which can better extract spectral-spatial features from the HIS
data sets.

Figs. 5-7 illustrate the classification maps using SVM,
2-D-CNN, 3-D-CNN, M3D-CNN, SSRN, and MCNN-CP.
The visual results in these figures are consistent with the
numerical values listed in Tables VII-IX. Compared with the
reference image, we can draw the conclusion that the quality
of classification map of SSRN and MCNN-CP is far better
than other methods. Furthermore, we can easily find that the
average of class-wise classification accuracy of our model
is higher than SSRN. By carefully comparing our method
with SSRN, we can observer that more incorrectly classified
pixels exist in the SSRN generated results. Benefiting from
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TABLE V

OA (%) OF DIFFERENT SUBSPACE SPECTRAL DIMENSIONS
UNDER 5% AND 30% TRAINING DATA
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TABLE VIII

CLASSIFICATION RESULTS (%) OF DIFFERENT MODELS
ON THE SALINAS SCENE DATA

Soectral Size 5% 30% Class. _SVM _ 2D.CNN _ 3D.CNN _ M3D-CNN__ SSRN _ MCNN-CP
P P up SA P up SA I 99.60 100 9841 97.50 100 100
15 9590 98.72 99.75 | 99.60 99.87  99.99 2 99.82 99.96 100 100 100 100
20 9549 9898 9975 | 99.52 99.93  99.99 3 99.26 99.63 99.23 99.43 100 100
With PCA (k) 25 9545 98.60 99.77 | 99.58 99.85 100 4 99.40 99.28 99.90 99.51 99.89 100
30 9592 9874 99.81 | 99.64 9990 100 5 99.42 99.20 99.43 99.72 100 100
35 9629 98.67 99.86 | 99.69 99.92 100 3 9‘9°§3 }gg gg;g ggfg }83 }gg
Without PCA L 9421 97.85 99.52 | 99.78 99.87 99.98 8 5305 o6 8995 e 100 100
9 99.71 100 99.81 99.70 100 100
10 97.03 98.82 98.36 97.31 99.91 100
TABLE VI 11 98.24 99.73 98.12 98.05 100 100
OA (%) OF DIFFERENT DROPOUT RATIOS g gg-‘;{; }gg gg-gg gg-;g }88 igg
UNDER 5% AND 30% TRAINING DATA 14 9730  99.86 98.60 98.42 100 100
= 07 15 92.71 91.52 7931 87.18 99.96 100
Dropout o o 16 99.41 99.92 94.51 91.11 100 100
_ 1P UP_ SA P UP_ SA on 9294 9739 9395 9479 5997 00
without 9532 9842 99.58 | 99.62 9990 99.98 4033 40.02 40.15 40.30 40.05 40.01
0.2 95.59 98.69 99.83 | 99.65 99.88 100 AA 94.61 98.85 97.02 96.26 99.97 100
0.3 9577 98.64 99.87 | 99.65 99.92 99.99 +2.29 +0.07 40.64 40.56 40.04 40.02
0.4 96.29 9898 99.86 | 99.68 99.94 100 Kappa 92.12 97.07 93.31 94.22 99.97 100
0.5 96.76 9878 99.69 | 99.57 99.88  99.99 019  £0.11 £0.51 £022  £006  +0.01
TABLE VII TABLE IX

CLASSIFICATION RESULTS (%) OF DIFFERENT MODELS ON THE IP DATA

CLASSIFICATION RESULTS (%) OF DIFFERENT MODELS ON THE UP DATA

Class,. _SVM___2D-CNN___3D-CNN__M3D-CNN__ SSRN __ MCNN-CP Class. __SVM___2D-CNN__3D-CNN__ M3D-CNN__ SSRN__ MCNN-CP
1 82.20 75.00 79.23 97.03 97.82 100 1 94.72 98.51 98.40 98.31 100 100
2 7382  81.40 88.60 97.90 99.17 99.45 2 97.15  99.54 96.91 96.10 99.87 100
3 82.15  87.60 85.81 92.41 99.53 99.88 3 8273 84.62 97.05 96.34 100 100
4 7712 62.04 90.53 93.25 97.79 100 4 96.82  98.04 98.84 98.82 100 99.51
5 73.66  92.30 96.11 95.00 99.24 100 5 99.71 100 100 99.97 100 99.89
6 9340 9921 98.43 99.74 99.51 100 6 9048 97.10 99.32 99.83 100 100
7 96.21 75.00 9236 100 98.70 100 7 8773 95.05 98.92 99.66 100 100
8 85.72 100 98.51 99.99 99.85 100 8 8829 9639 98.33 99.23 99.34 99.86
9 97.38  64.28 88.90 96.61 98.50 100 9 99.90  99.69 99.90 99.92 100 99.95
1o 7101 82.79 87.72 96.32 98.74 100 9433 97.84 96.52 95.77 99.89 99.94
11 76.50 91.27 91.42 97.13 99.30 99.45 OA 1019 +021 10.08 1021 10.02 1003
12 8390  82.89 90.04 97.16 98.43 99.94 0297 9656 97.47 95.00 99.80 99.92
13 8356 99.30 99.00 99.60 100 98.62 AM Loa 4003 4132 131 4005 4012
14 9863 9887 97.95 98.42 99.31 100 9251 97.19 95.50 94.51 99.87 99.92
15 94.21 86.29 82.57 83.31 99.20 100 Kappa 050 1051 1022 1014 1002 10.03
16 69.63 100 98.51 100 97.82 100

on 5529 8949 91.09 9533 99.18 99.72
+282  £0.16 041 +0.12 +0.25 +0.18 TABLE X
An 7903 8613 91.59 96.40 98.93 99.81
+2.66 +0.81 +0.16 +0.73 +0.59 +0.54 COMPARISON OF PADDING CHANNELS WITH ZEROS(A) AND

Kappa 83.11 87.95 89.98 94.71 99.06 99.68 CHANNEL-WISE SHIFT(B) ON 30% TRAINING

PP 1316 4050 +0.50 +021 +0.29 +0.13 SAMPLES OF THE IP

the introduction of the covariance pooling strategy, our model
does not cause such problems and performs better than SSRN.

For all the competitors, Fig. 8 further shows their perfor-
mance along with the increasing number of training samples.
We can see that our model again outperforms the others in all
these cases. SSRN ranks second among all these competing
methods, which achieves comparable results of OA and Kappa
in the case of sufficient training samples. However, its AA
is very low, especially when the number of training samples
is small. In contrast, our model can achieve very high AA
results while holding slightly better OA and Kappa values than
SSRN, which demonstrates that the AA of our MCNN-CP in
all classes is surely higher.

E. Component Analysis

To further investigate the underlying contributions of
different tricks used in our model, we demonstrate their

Data Without A and B With A With B With A and B
OA (%) 99.46 99.54 99.72 99.64
AA(%) 99.40 99.69 99.81 99.72

Kappa(%) 99.38 99.47 99.68 99.59
Train(m) 11.6 14.5 11.7 144
Test(s) 5.8 7.5 5.8 7.1
Parameters 1,011,584 1,122,176 1,011,584 1,122,176

individual roles in this section. The experimental results are
shown in Fig. 9. From this figure, we can see that differ-
ent combinations of the proposed mechanisms, covariance
pooling, channel-wise shift, and channel-wise weighting, can
all improve the accuracy to some extent, which empirically
support our theoretical analysis. When the covariance pooling
is absent, using channel-wise shift and channel-wise weighting
individually can lead to slightly higher classification accu-
racy, and combing these two schemes together can get even
better results. When the covariance pooling layer is added,
channel-wise shift can still improve the accuracy of classifi-
cation, while channel-wise weighting does not perform well.
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(e) 3D-CNN
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Fig. 6.
(f) M3D-CNN. (g) SSRN. (h) MCNN-CP.

We discuss the reason for this result as follows. Although both
the schemes of channel-wise shift and channel-wise weighting
emphasize the importance of different spectral bands and try to
reveal more structural information, excessive variance between
weights will reversely hinder our model from learning the
trustful spectral-spatial features. In general, in practical appli-
cations, once we use the covariance pooling, it is suggested
that the mechanism of channel-wise weighting should not be
adopted. However, we can still find from Fig. 9 that in the
case of 1% training samples, using channel-wise weighting
and covariance pooling together can effectively emphasize
the information of the main spectral bands and improve the
classification accuracy. Hence, we can still use channel-wise
weighting together with the covariance pooling when the
training samples are very small.

Recall that one can achieve the similar function by bilat-
erally padding the spectrum channel with zeros. To directly

Classification maps of the UP data using different models. (a) False color image. (b) Reference image. (¢) SVM. (d) 2-D-CNN. (e) 3-D-CNN.

compare this scheme with our channel-wise shift, Table X
shows the results using our method with or without these
two schemes. From this table, our first observation is that
channel-wise shift achieves better classification accuracy over
the other options. Moreover, our scheme increases few
training and running time compared with the very original
method. Encouragingly, all these results are achieved with-
out requirement of any additional parameters. We can also
observe that when using the two schemes together, the clas-
sification accuracy ranks between their individual results.
From this, we deduce that compared with the method of
expanding channels to obtain a fair number of convolution
times for each spectral band, our proposed channel-wise
shift will emphasize informative spectral bands and suppress
useless ones, so as to obtain more discriminative features.
In summary, our strategy is simpler, faster and also more
accurate.
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(b) Reference image (c) SVM (d) 2D-CNN

(e) 3D-CNN

(f) M3D-CNN
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Fig. 7. Classification maps of the Salinas Scene data using different models. (a) False color image. (b) Reference image. (c) SVM. (d) 2-D-CNN. (e) 3-D-CNN.
(f) M3D-CNN. (g) SSRN. (h) MCNN-CP.
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Fig. 10 further shows the performance of our method with

Classification results (%) using different models on the IP data under different amount of training size. (a) OA. (b) AA. (c) Kappa.

the mixed usage of 2-D-3-D operation achieves a well balance
or without using the mixed convolution mechanism. From between excellent classification results and fast running time.

the results of using only 2-D or 3-D convolution layers, This result verifies that the introduction of 2-D convolution
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Classification results (%) using different methods on the IP data. Among all the methods, (5)—(8) adopt the covariance pooling scheme, while (1)—(4)

not. (2) and (6) adopt the channel-wise shift scheme. (3) and (7) adopt the channel-wise weighting scheme. (4) and (8) adopt both the channel-wise shift and
weighting schemes. (a) OA with 1% traing data. (b) AA with 1% traing data. (c) Kappa with 1% traing data. (d) OA with 5% traing data. (e) AA with 5%

traing data. (f) Kappa with 5% traing data.

98 12
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OA(%)
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Fig. 10. Results of OA(%) and training time(s) using different models on
5% training samples of the IP. (d)—(f) adopt the covariance pooling scheme,
while (a)-(c) not. (a) and (d) adopt four 2-D convolution layers. (b) and
(e) adopt three 3-D convolution layers. (c) and (f) adopt three 3-D and one
2-D convolutions.

can not only effectively fuse the numerous spectral bands
generated by 3-D convolutions, but also reduce the dimension
of channels and release many occupied resources for speed-up.
From Fig. 10, we also can conclude that covariance pooling is
beneficial for overcoming the defect of overlooking spectral
information in a full 2-D convolutional network, thereby
significantly improving model performance.

From Figs. 8-10, we can summarize the following three
conclusions: first, adding a 2-D convolution layer after three
3-D convolution layers not only reduces the spectral dimen-
sion for computational saving, but also extracts discrimina-
tive spectral-spatial features for better classification results.

TABLE XI

OUTPUT FORM AND PARAMETERS OF THE PROPOSED
MODEL ON THE IP DATA

Layer Output Shape Parameters
Input Data (145,145,200,1) -
Preprocessing Layer (25,25,35,1) 0
3D Convolution (8,3,3,7) (23,23,29,8) 512
3D Convolution (16,3,3,5) (21,21,25,16) 5776
3D Convolution (32,3,3,3) (19,19,23,32) 13856
Reshape Layer (19,19,736) 0
2D Convolution (64,3,3) (17,17,64) 424000
Reshape Layer (289,64) 0
Covariance Pooling (64,64) 0
Feature Vector (2080) 0
Fully Connected Layer (256) 532480
Fully Connected Layer (128) 32896
Fully Connected Layer (16) 2064
Total Trainable Parameters With PCA:
(Spectral Size 35) 1,011,584
Total Trainable Parameters Without PCA: 4,052,864

(Spectral Size 200)

Second, the covariance pooling can fully exploit the
second-order information contained in spectral-spatial feature
maps and achieve appealing results while reducing hyperpara-
meters in subsequent processing. Third, the channel-wise shift
and channel-wise weighting are useful tricks to highlight the
information of important spectral bands. However, it is not
recommended to use channel-wise weighting together with
covariance pooling when the number of training samples is
already enough.

We finally show the structure and the parameter number
of our model in Table XI. We can find that the experi-
mental results of MCNN-CP are generated with relatively
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small amount of training parameters. It is noted that without
using PCA to reduce the dimensionality of the channels,
the amount of model parameters will be four times more,
as listed in Table XI, which is undoubtedly fatal for training
efficiency and equipment requirements.

V. CONCLUSION

In this article, a mixed use of 3-D and 2-D CNN with
covariance pooling is proposed for HSI classification. In con-
trast to using 3-D or 2-D convolution alone, the mixed usage
can combine the ability of 3-D convolution that extracts
spectral—spatial features and the advantage of 2-D convolution
that fuses spectral bands for better discrimination and fewer
model parameters. Besides, the covariance pooling strategy
based on second-order statistics can make full use of spec-
tral information and spatial information. In addition, two
schemes, channel-wise shift and channel-wise weighting, are
proposed to further reveal richer information and recalibrate
channel-wise feature responses by giving prominence to infor-
mative channels and suppressing the effects of useless spectral
bands. The experimental results demonstrate that our proposed
network architecture can effectively enhance the accuracy
of HSI classification. However, the current two schemes of
channel-wise weighting and covariance pooling cannot be used
together to guarantee a better performance. Besides, the weight
obtained as (1+4Ratio) may be not the best choice, either. In the
near future, we will make effort to find better weights for more
universal applications of our model.
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