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ABSTRACT Due to the rapid development of communication and sensing technology, a large amount
of mobile data is collected so that we can infer the complex movement laws of humans. For cities, some
unusual events may endanger public safety. If the early warning of an abnormal event can be issued, it is
of great application value to urban construction services. To detect urban anomalies, this paper proposes
the Hierarchical Urban Anomaly Detection (HUAD) framework. The first step in this framework is to build
rough anomaly characteristics that need to be calculated by some traffic flow consisted of subway and taxi
data. In the second step, the alternative abnormal regions were obtained. Then, the long short-term memory
(LSTM) network is used to predict the traffic to get the historical anomaly scores. Following that, the refined
anomaly characteristics are generated from adjacent regions, adjacent periods and historical anomalies. The
final abnormal regions were detected by One-Class Support Vector Machine (OC-SVM). At last, based on
real data sets, we analyzes the traffic flow of the target region and adjacent regions frommultiple perspectives
in view of the large crowd gathering activities, and the effectiveness of the method is verified.

INDEX TERMS Spatio-temporal data fusion, traffic flow prediction, urban anomaly detection.

I. INTRODUCTION
With the development of communication technology and
sensing technology, massivemulti-source heterogeneous data
are generated from clients, such as vehicle trajectories, social
platform data, geographic information system (GIS) data [1],
[2], etc. These available data lay a foundation for the anomaly
analysis and detection based on the laws of humanmovement.
For metropolis with hundreds or even tens millions of people,
the movement of crowd follows complex but stable pat-
tern [3]. Obviously, a serious stampede that occurred during
the New Year celebration in Shanghai will bring huge loss of
life and property if there is no timely warning and treatment.

For urban anomalies, major incidents, epidemics, serious
accidents, environmental disasters, and terrorist attacks all
pose great threats to public safety and order [4]. At present,
a variety of city data is at our fingertips and provides us with
two abilities: one is to learn from history how to correctly
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respond to threats that have occurred, and the other is to
respond to these threats in time and even predict them in
advance [5]. Anomalies in urban areas may be caused by
accidents, traffic regulations, protests, sports, celebrations,
disasters, and other events. Detecting anomalies can help dis-
perse congestion, diagnose accidents, and improve people’s
travel experience.

If we can detect anomalies in time or even pre-
dict anomalies in advance, we can minimize the losses
caused by urban anomalies. This will be of great social
value [1]. The paper focuses on local anomalous events
(such as concerts, large competitions, major traffic acci-
dents, etc.) that occur in a small space, not in the urban
area (such as holidays) [6]. Compared to overall urban
events, local anomalies are low predictable, and the influ-
encing factors are more complex, these making them more
challenging [7].

This paper proposed a new framework to detect on urban
anomalies. After sufficient data preprocessing, taxi and sub-
way data reflecting passenger flow at various times in
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each area are obtained. In anomaly detection, a series of
characteristics are constructed for each time period in each
region and used for the input of the OC-SVM algorithm for
abnormal detection.

Firstly, anomalies in different regions and different time
periods are constructed based on the similarity between dif-
ferent regions and different data sources [1], and the candidate
anomaly regions are filtered out by the OC-SVM. On this
basis, to construct additional anomaly characteristics, we first
adopt Long Short-Term Memory (LSTM) [8] to learn traffic
data and predict the traffic flow in the last 4 time periods [9].
In order to strengthen the training effect and improve training
accuracy, we have carried out data enhancement and normal-
ization on data to prevent overfitting. The difference between
prediction and actual flow is taken as a one-dimensional
independent characteristic. In addition, we also calculate the
Pearson Correlation Coefficient (PCC) of the traffic sequence
of the current adjacent period and the traffic sequence corre-
sponding to the adjacent period one week ago in each region
[10], while paying attention to the trend of traffic changes
in the adjacent region [11]. In the above, a series of related
indicators are aggregated to form the characteristic input of
OC-SVM, thereby anomalous events in the anomalous area
screened [3]. This process aims to improve the accuracy of
the model.

Finally, by visualizing the changes in the traffic area during
the relevant time period of the Shanghai Mercedes-Benz
Arena, we can clearly see the changes in the traffic flow of
the concert area in the target area and adjacent areas.

The contributions of this paper includes:

1) A novel framework named Hierarchical Urban
Anomaly Detection (HUAD) is propose to detect urban
anomaly region based on spatio-temporal data.

2) The spatio-temporal data from taxi and subway are
integrated to improve the accuracy of the method.

3) For a region, the correlation anomalies of adjacent time
periods and adjacent regions as well as the influence of
predicted values on the anomaly scores are considered.

The rest of this paper is structured as follows. Section II
presents some related studies and Section III describes the
framework of urban anomaly region detection. The detailed
model is described in Section IV and SectionV. Experimental
results are introduced in Section VI. Finally, we conclude this
work
in Section VII.

II. RELATED WORK
A large amount of heterogeneous network data in cities
is collected timely consists in that the sensor net-
works and communication technologies are developing
rapidly. New technologies also make it possible to pre-
dict urban anomalous events through spatio-temporal net-
work data. On the basis of the huge practicality of urban
anomaly detection, it has been widely studied in recent
years [12].

A. SPATIO-TEMPORAL DATA PROCESSING AND
APPLICATIONS
With the fast development of various positioning techniques
such as Global Position System (GPS), mobile devices and
remote sensing, spatio-temporal data has become increas-
ingly available nowadays. This survey [13] summarizes the
characteristics of spatio-temporal data, common processing
methods and related applications. Gao et al. proposed mul-
timodal deep learning model based on spatio-temporal data
witch can handle complex nonlinear urban traffic flow pre-
dictions with satisfactory accuracy and effectiveness [14].
By analyzing the spatial and temporal patterns of traffic
accident frequency, Ren et al. presented the spatio-temporal
correlation of traffic accidents [15]. Sun et al. propose a deep
neural network model based on spatio-temporal data to iden-
tify non-recurring traffic congestion and explain its causes
[16]. Wang et al. develop a two-stage method to effectively
detect traffic anomalies from GPS snippets, thus solving the
problem of noise and sparsity of GPS fragments collected by
vehicles [17].

B. URBAN ANOMALY DETECTION
Recently, artificial neural networkmodels have achieved con-
siderable success in various machine learning tasks [18]. Due
to its strong hierarchical feature learning ability in the space-
time domain, it has been widely used in urban big data pre-
diction learning, representation learning, anomaly detection
and classification. Sudrich et al. discuss graph modeling and
the application of anomaly detection for urban data [19].
Based on Bayesian network, a reputation model is proposed
by Zhang et al. for the selection of credible sample points to
anomaly detection [20]. In order to reveal the characteristics
of regional traffic flow patterns in large road networks, He
et al. employ dictionary-based compression theory to identify
the features of both spatial and temporal patterns by analyzing
the multi-dimensional traffic-related data [21]. Zhang et al.
perform a two-stage OC-SVM with radial basis function(rbf)
kernel to select anomalies [7].

III. PRELIMINARIES
This section introduces the HUAD framework for resolving
urban anomaly detection. First, the traffic flow matrix is
generated by traffic data and the regions. Secondly, the con-
structed anomaly characteristics I (ACI) is regarded as the
input of OC-SVM so that we obtained the anomaly score I.
The alternative regions were selected according to the score
ranking. Next, LSTM multi-step prediction is used to predict
the flow in multiple steps, and the historical anomaly score
(HAS) is obtained by comparing it with the real data. Finally,
the historical anomaly score is combined with traffic flow
data to generate the anomaly characteristics II (ACII) of the
alternative regions, and the anomaly score II is calculated by
OC-SVM. The regions with high anomaly score II are the
final abnormal regions. There are several related definitions
aiming to express the framework conveniently.
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FIGURE 1. The framework of hierarchical urban anomaly detection.

Definition 1 (Region): According to different studies,
there are many types of spatial divisions based on various
standards and granularities. In this paper, Shanghai is divided
into regions through the main road network, and they are
denoted as r = r1, r2, . . . , rnr , where nr is the number of
regions. In this paper, nr is equal to 541.
Definition 2 (Time Period): A day is divided into 48 time

periods, each time interval is 30 minutes, denoted as t =
t1, t2, . . . , tnt , where nt is the time period of a month, about
1440(30 ∗ 48).
Definition 3 (Data Type): For the raw data of subways

and taxis, it is processed into OD data and mapped into a
traffic flow matrix. Different traffic flow matrices represent
diversified data sources, where the flow to an area over a
period of time is defined as two data sources, the inflow
and outflow. So we define the category of data D =

Dtaxiin ,Dtaxiout ,Dmetroin ,Dmetroout = D1,D2,D3,D4.
Definition 4 (Traffic Flow Matrix): Define a matrix TR,

where the element VDm
ti,rj = TRm(i, j) represents the traffic

value for the data source Dm in the rj-th area of the ti-th time
period.

IV. TRAFFIC FLOW PREDICTION MODEL
A. LONG SHOT-TERM MEMORY NEURAL NETWORK
The long short-term memory network [8] is a variant of RNN
capable of learning long-term dependence. LSTM was pro-
posed by Hochreiter and Schmidhuber in 1997 [9] and it was
refined and popularized by many scholars in the following
studies. LSTM is widely used in many fields, it can handle
a variety of problems. The LSTM neural network has three
gate structures, called input gate, forgetting gate and output
gate. The design of gates is to protect and control unit state.
LSTM is generated with a definite purpose to avoid the long-
term dependency problem. Fig. 2 shows the repeating module
containing four interacting layers in LSTM, Xt is the input to
the module, and ht is the output.

B. TRAFFIC FLOW PREDICTION MODEL BASED ON LSTM
In the previous subsection, four traffic flow matrices TR are
obtained, then traffic flow prediction will be performed each

FIGURE 2. Repeating module of LSTM.

traffic flow matrix. First, for a certain region r, the sequence
vectors of traffic flow for all time periods are X =

x1, x2 . . . , xn. The time prediction model refers to take the
known time series X to predict the flow of the following
specific time periods Y = xn+1, xn+2 . . . , xn+m, and m is the
length of the future value to be predicted.

In this paper, in order to carry out abnormal detection
for the target time period t and target area r , we first
get the time series of the four traffic flow matrices X =
x1, x2 . . . , xt . We utilize the data of first 7 days before the
target period to predict the flow value 4 periods before the
current period. That means the input of LSTM model is X =
xt−3−1t+1, . . . , xt−3, the output are flows of four periods
before the target period Y = yt−3 . . . , yt . Y ’s corresponding
real value is Xreal = xt−3, . . . . . . , xt , and then calculate
the absolute value of the difference between them to get a
sequence of differences.

C. MULTI-STEP TIME SERIES PREDICTION MODEL
For LSTM time series prediction, we adopt the sliding win-
dow learning method to train and predict the model. The
specific training methods are shown in the Fig. 4. In order
to rapidly converge the model, we normalized the data set,
as (1). Additionally, some simple noises are added to train
the model to enhance the robustness of the model.

x =
x − min
max − min

(1)
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FIGURE 3. Time series training on LSTM.

FIGURE 4. LSTM multi-step prediction.

As for a set of sequences X , we input them in batches,
such as training sequences of length L, we first determine the
length of each training input as len. Given a sequence from x0
to xlen−1, LSTM model will output sequence from x̂1 to x̂len,
its corresponding real sequence is from x1 to xlen. Then the
mean square error (MSE) between the predicted value and the
real value is loss function showcased as (2). Training keeps
MSE as low as possible.

MSE =
1
m

m∑
i=1

(yi − ŷi)2 (2)

Inputting the sequence from x0 to xlen−1 into trained model
M will get sequence from x̂1 to x̂len. Then we utilize from x1
to xlen−1, appending x̂len to predict x̂len+1. The results of the
multi-step prediction are generated by taking the predicted
value to continue the backward prediction. All we need is
the predicted sequence value four steps behind the original
sequence. As shown in Fig. 4, the value generated by the
prediction is used as input to continue the prediction for the
next period.

D. HISTORICAL ANOMALY SCORE GENERATION
The four predicted periods are obtained, they are denoted as
(3).

A =


x̂1D1

x̂1D2
x̂1D3

x̂1D4

x̂2D1
x̂2D2

x̂2D3
x̂2D4

x̂3D1
x̂3D2

x̂3D3
x̂3D4

x̂4D1
x̂4D2

x̂4D3
x̂4D4

 (3)

historical anomaly score are obtained as (4), which corre-
spond to the sum of the absolute value of the difference
between the predicted value and the actual flow value of the
four traffic flow matrices.

Cpre={Scoretaxiin , Scoretaxiout , Scoremetroin , Scoremetroout } (4)

V. ANOMALY DETECTION MODEL BASED ON OC-SVM
The historical anomaly score are obtained by calculating the
difference between the actual normal flow and the predicted
flow from multi-step LSTM. This section introduces the cor-
relation between the target area and the neighboring area’s
flow changes to explore some other abnormal characteristics
as the input of OC-SVM.

A. ONE-CLASS SUPPORT VECTOR MACHINE
Assuming that there’s a distribution containing the normal
sample, the abnormal samples are outside the normal distri-
bution. OC-SVM attempts to gain the ability to spot anoma-
lies without supervised training [22]. It maps the data to
the feature space of the corresponding kernel and tries to
find a hyperplane as far away from the origin as possible
to determine whether the new input data is normal or not.
Different kernel functions can be applied to obtain different
hyperplanes corresponding to a variety of nonlinear estima-
tors. To separate the data set from the origin, we solve the
following quadratic program (5)(6):

min
ω,ξ,ρ

1
2
‖ω‖2 +

1
vl

∑
i

ξi − ρ (5)

(ω ·8(Xi)) ≥ ρ − ξi, ξi ≥ 0 (6)

The parameter v represents the ratio of support vectors to
outliers. ξi is nonzero slack variable. 8 is the function witch
mapping data to high-dimensional feature space.

Therefore, we construct some characteristics related to
urban travel traffic flow and apply them to OC-SVM for
anomaly detection. The following section will describe the
method in detail.

B. INDEPENDENT ABNORMAL SCORE CALCULATION
For each period t , we compute a pairwise similarity matrix
S t ∈ Rr ·D

∗r ·D for each region r and each data source r .
S tr1,D1;r2D2

represents the similarity between the data source
D1 in the region r1 and the data source D2 in the region r2
during the period t . S tr1,D1;r2D2

can be obtained by (7). Here ρ
represents PCC. l is used to control the number of values of
interest in calculating similarity [7]. Additionally, we set 1 to
cover the length of the whole week:

S tr1,D1;r2D2
= ρ

(
vr1,D1
(t−l+1):t ′v

r2,D2
(t−l+1):t

)
(7)

2 is the threshold, when S t−1r1,D1;r2,D2
> θ , < r1,D1 > and

< r2,D2 > are considered historically similar. When cal-
culating the similarity reduction matrix, we let SC t

r1,D1;r2D2
denote time period t − 1 and time period t , and the similarity
between the data source D1 in the region r1 and the data
source D2 in the region r2 is reduced. It can be calculated by
(8). Finally, (9) is to calculate the degree of anomaly ad r,Dt
[25] for each vr,Dt .

SC t
r1,D1;r2,D2

= max
(
0, S t−1r1,D1,r2,D2

− S tr1,D1;r2,D2

)
(8)
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ad r,Dt =

∑
<r ′,D′>∈HS tr,D

S t−1r,D;r ′,D′ ,r
t−1, d · SC t

r,D;r ′,D′∑
<r ′,D′>∈HS tr,D

S t−1r,D;r ′,D′
(9)

C. REGIONAL COMPREHENSIVE ANOMALY SCORE AND
ANOMALY DETECTION
This section introduces the aggregation of various abnormal
characteristics and anomaly detection by OC-SVM. The cal-
culation of regional anomaly score is divided into two steps.
In the first step, we calculate the anomaly score I of the
current period in each region. Specifically, for the t period
of region r , construct (10) witch is known as ACI:

Xrrt =< ad r,D1
t , ad r,D2

t , . . . , ad r,Dnst > (10)

χr is the set with all Xrrt .
OC-SVM with rbf kernel will be trained on χr . Giving a

new Xrrt , the model will output abnormal points scorerrt . new
Xrrt will be added to the χr for further training.< r, t > with
the β largest scorerrt in the past 24 hours are choose as the
candidate regions. The definition of candidate regions set C
is as follows (11):

C = argmax
r,t

[l · nr · β] {score_rrt |r ∈ [1, nr ] ,

t ∈ [T − l + 1,T ]} (11)

In the set above, l is the number of periods in a day, and
argmax[k] represents the function that returns the index of the
maximum k value. In the second step, as well as the nearby
region ad r,Dt and the historical anomaly score,the adja-
cent periods ad r,Dt are considered to calculate the regional
anomaly score. Candidate regions with high anomaly scores
are final outputs.

Specifically, for the t period of region r , (12) is regard
as ACII:

Xintrt = < ad r,D1
t , ad r,D2

t , . . . , ad r,Dnst ,

ad r,D1
t−1 , ad

r,D2
t−1 , . . . , ad

r,Dns
t−1 ,

ad r,D1
t−t1+1

, ad r,D2
t−t1+1

, . . . , ad
r,Dns
t−t1+1

,

ad_nearbyr,D1
t , . . . , ad_nearbyr,Dnst ,

Scoretaxiin , Scoretaxiout ,

Scoremetroin , Scoremetrocut > (12)

Line 1 is the same thing as Xrrt . Line 2 to Line 3 are the
scores for the region r in the previous t1 − 1 time period,
where t1 represents the number of consecutive periods con-
sidered. Line 4 represents the score for the area around r .
Similar with χr , χint contains all Xintrt of the collection, Line
5 indicates historical anomaly score (HAS).

For adjacent areas, Fig. 5 is the histogram of the distance
between each region of Shanghai and its nearest five regions.
Since the distance amount most areas is about 1200 meters,
the adjacent areas are selected with a radius of 1200 meters,
and the nearest two areas are taken as the adjacent areas of
the target area.

We train OC-SVM on Xintrt , just like in the first stage.
Given a new Xintrt , the model will output ASII score_intrt .

FIGURE 5. Histogram of interregional distance distribution.

Finally, we sort all < r, t > in the candidate set C according
to score_intrt and select the < r, t > with the high value of
the exception as the region of the exception, as (13):

Cfinal = argmax
r,t

[l · nr · α] {score_intrt |r ∈ [1, nr ] ,

t ∈ [T − l + 1,T ], score_rrt ∈ C} (13)

VI. EVALUATION
This section concentrates on analysis of the experimental
results. First, we search some information about large-scale
events through the Internet, then treat them as criteria for the
accuracy of anomaly detection. In part one, the key links of
the experiment are compared by us, while the accuracy of
the model is judged recall rate (4). In part two, visual flow
analysis of concert was performed to showcase the impact of
large-scale events on urban traffic conditions.

The recall rate can be applied to represent the proportion
of detected abnormal events to the total, where TP represents
the number of detected abnormal events, and FN refers to the
model not detected in the abnormal events:

Recall =
TP

TP+ FN
(14)

A. DATA PREPROCESSING
As the rapid growth of sensing technology and the informa-
tion era, the total number of taxis in China has soared in recent
years, by one estimate, it’s a trend that an average growth rate
is 17% annually. The municipal government have imported
GPS technology to the taxi industry in order to better manage
the planning. The vehicle performs comprehensive monitor-
ing, real-time display of the vehicle’s location. The technol-
ogy can save a large chunk of generated urban traffic data,
which is convenient for smart city construction.

Taxi data can directly reflect the status of urban road traffic
and passenger flow. The capacity of taxis in metropolis,
however, can only embody the changes in actual traffic flow
unilaterally. Compared to the capacity of taxis, the capacity of
subways with thousands of times of improvement can better
reflect the movement of citizens in the city. The subway data
is different from the GPS data of taxis. It has clear start
and end locations, field information is easier to process, and
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TABLE 1. Specific information of taxi GPS trajectory data.

TABLE 2. Taxi statistics.

TABLE 3. Display of subway data.

the origin-destination (OD) response is more obvious. It is
very suitable for identifying abnormal behavior such as large
crowds gathering quickly in cities.

1) DATA DESCRIPTION
First, a brief description of the taxi GPS data is shown
in Table 1 and Table 2. Each piece of data in this dataset
includes 7 fields. The unit of speed is km/h. In this paper,
the original GPS data is routinely preprocessed, and some
dirty data and invalid data are eliminated. Based on the
processed data, the passenger data is extracted as valid data
information based on the field time and the vehicle id. For the
subway data, as shown in Table 3 and Table 4, the data con-
tains fields such as card number, transaction time, transaction
date, chinese name of the subway line, transaction amount,
and other fields.

2) SPACE AND TIME DIVISION
Above all, this paper divides Shanghai into regions [23].
The purpose is to form cleanse OD data and form the
required traffic flow matrix in the subsequent processing
of subway and taxi traffic data. Taking the city’s main
road network as a framework, we divided Shanghai into
541 regions, and the whole urban area in this study was
between N31.15-N31.37 and E121.31-E121.84, as shown
in Fig. 6. These areas do not overlap with each other, and
each area is naturally divided by the urban road. Accordingly,
dividing the urban area by roads. is more natural, and it

TABLE 4. Subway statistics.

FIGURE 6. Regional division of Shanghai.

also has a certain abstract modeling ability. Recording these
areas R = r1, r2, . . . , r541.

In order to comply with the prediction input of the time
series model, we consider such conditions to more clearly
reflect the changes in the traffic flow in phases. The 24 hours
a day is divided into 48 periods, and each period is 30 minutes
in length to obtain a time series T = t1, t2, . . . , t1440.

3) TRAFFIC FLOW MATRIX GENERATION
For taxi data, after pre-processing, the data now available
is a series of taxi status information. We classify each taxi
according to GPS time and determine the passenger’s board-
ing location based on the loading status ilocst , location for
alighting iloced , boarding time st , alighting time ed . Then
we get the area number corresponding to the boarding point
and the alighting point r1, r2 by the latitude and longitude,
the serial number of the time period corresponding to the
boarding time and the boarding time t1, t2. Following that,
we determine the value V

Dtaxiin
t1,r1 and V

Dtaxiout
t2,r2 add 1 to each

value to get a matrix of two nt ∗ nr (1440 ∗ 541) taxi data.
For subway data, after removing invalid data, we notice

that most remaining data is effectively regular. Initially,
we classify the data of the day according to the card number
id and time, and then determine whether to get on or off, area
number r1, r2, and boarding time t1, t2 according to the con-
sumption amount of the card. Then we determine the value
V
Dmetroin
t1,r1 and V

Dmetroout
t1,r1 adding 1, meanwhile, we delete the

original two data at the same time. Since the operating time
of the Shanghai Metro is more than 00:00 on the day, we have
deleted the source data after extracting valid information so
that it can avoid missing data. The remaining data is divided
into two parts: one is invalid data, the other is passengers who
get on the vehicle on a day, but get off on the next day. Hence,
as for the second type of data, we add it to the next day when
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TABLE 5. April 2015 large-scale event in Shanghai.

processing data, andmatch the traffic flowmatrix information
to make full use of the data.

After the data preprocessing, we generated four corre-
sponding traffic flow matrices TR, namely, taxi inflow traffic
flow matrix, taxi outflow traffic flow matrix, subway inflow
traffic flow matrix, and subway outflow traffic flow matrix.

B. RESULTS ANALYSIS
1) LIST OF LARGE CROWD GATHERING ACTIVITIES IN
SHANGHAI IN APRIL
As shown in Table 5, this paper finds large-scale crowd
gathering activities that occurred in Shanghai in April 2015,
including megastar concerts and some major football tour-
naments, which affects the traffic conditions in this area and
surrounding areas.

2) RECALL RATE ANALYSIS AND COMPARISON
First, the location r where the large-scale gathering occurs
is given, then we calculate the corresponding area number in
order to get the corresponding period number t according to
the start and end time. Mark the tag corresponding to the <
r, t > tuple as 1, other periods are marked as 0. After marking
the abnormal data, we perform anomaly detection according
to the method described in the previous section and analyze
the experimental results corresponding to real data. Because
the anomaly information obtained in this article is relatively
limited, while the entire city is promoting development and
traffic congestion anomalies may occur due to some complex
and unknown factors. In addition, through data observation
and analysis, compared with some large-scale activities and
performances, the morning and evening peaks in cities have a
greater impact on urban traffic. Therefore, analyzing the local
area anomalies caused by these large-scale performances,
we apply the recall rate to measure the accuracy of the model
judgment. Recall rate is calculated by (14).

In order to show the effect of the model, we split and
simplify the two key steps of the model, conduct experiments
for comparison, and analyze key indicators such as multiple
data sources, time series prediction indicators, adjacent areas,
and adjacent periods. Table 6 demonstrates the experimental
results of key components in the model.

TABLE 6. Experimental outcomes and comparison.

FIGURE 7. Taxi traffic flow in area 32 every Saturday and Sunday in April.

Conversely, the Fig. 8 shows the trend of passenger flow
in China Art Museum station on Saturday and Sunday in
April. China Art Museum station is not only the main pas-
senger flow station in the target area 32, but is the nearest
subway station to Mercedes-Benz Arena. The flow trend of
this station can directly reflect the flow of subway passengers
in this area to some extent. First of all, from Fig. 8, it can
be seen that the subway capacity is more than ten times that
of a taxi, and the gap between subway and taxi capacity
is more obvious in downtown areas. Secondly, the interval
from 16:00 to 23:00 on Saturday and Sunday drawn with
dotted boxes in Fig. 8 is particularly visualized in Fig. 9.
According to Fig. 9, it can be observed that the passenger
flow on April 11th, 12th, 18th at 6 p.m. and around 10 p.m.
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FIGURE 8. Traffic flow of China Art Museum station on Saturday and
Sunday in April.

increases significantly compared with the normal weekend.
And these three periods correspond to three concerts.With the
surge of traffic flow, there is a large flow trend gap between
the target area and similar areas. The calculated anomalies
will also be remarkably increased, which can provide highly
useful information for detecting abnormal travel behavior in
cities.

C. CASE STUDY
A large crowd gathering event in Shanghai in April 2015 is
presented above. This paper devotes to conducting flow anal-
ysis and visualization of large-scale concerts given below.
Then the key components of the model will be analyzed from
multiple perspectives. All the concerts collected in this paper
were held in Shanghai’s Mercedes-Benz Arena, located in
area 32, which includes three subway stations. Among these
stations, the nearest subway station to the cultural center is
China Art Museum station, which is also the main stop to
take the subway to the cultural center.

1) TRAFFIC FLOW ANALYSIS OF TARGET AREA
In Fig. 7, it reflects the changing trend of taxi flow on Sat-
urday and Sunday in April, where the dotted line represents
the inflow traffic, the solid line represents the outflow traffic,
the first 24 hours represent Saturday, and the second 24 hours
represent Sunday. Because of the limited capacity of taxi,
it can be seen from the Fig. 7 that the taxi flow changes in
the area 32 basically keep changing with traffic laws in most
cases. Even during the Qingming Festival and in the period
of the large-scale concerts, the fluctuation of taxi traffic is not
obvious. Due to the concert held by a famous singer, however,
the traffic increases slightly at around 18:00 on April 11 and
the overall periodicity is obvious. The alteration with large-
scale activities is relatively limited. Therefore, the recall rate
is low when only the experiment from taxi data is conducted.

2) ANALYSIS OF TRAFFIC FLOW IN ADJACENT AREAS
From the Fig. 10, it demonstrates the Saturday and daily
passenger flow of South Xizang Road station in area 59 in
April. Area 59 where the exclusively one with a subway
station is located is the adjacent area of area 32. It can be
concluded from the dotted boxes in Fig. 10, a whopping
increase of traffic flow in area 59 occurs when some concerts

FIGURE 9. Traffic flow of China art museum station at fixed period on
Saturday and Sunday.

FIGURE 10. Traffic flow of South XiZang Road station, area 59.

have been held. In Fig. 11, the flow visualization is made
for the fixed period from 16:00 to 23:00 on all Saturdays
in April. Accordingly, the Fig. 10 reflects that at 6:00 p.m.
and around 10:30 p.m. on 11th and 18th, the peak section
appeared opposite to the traffic flow of China Art Museum
station in area 32.

The inflow and outflow surged at 18:00 and 22:00, because
China Art Museum station in area 32 was close to the concert
venue. On the contrary, for South Xizang Road station in area
59, the outflow increased slightly at 18:00 and the inflow
surged at around 22:00. As the regional traffic flow charac-
teristics around the target area, not all concert will affect the
adjacent area, such as the concert on April 12. Our model
shows the traffic impact caused by large activities improves
the recall rate by considering the flow characteristics of the
adjacent area.
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FIGURE 11. Traffic flow of South XiZang Road station at fixed period on
Saturday.

According to the variation of subway flow in Fig. 8 and
Fig. 9, it can be seen that the surge of passenger flow also
experiences a period of growth time. When the traffic peak
peaked at 18:00, the passenger flow in the first two periods is
constantly ascending. Therefore, the anomalies of the adja-
cent periods of the target period are also considered in the
model.

VII. CONCLUSION
In this paper, HUAD framework is proposed to detect
regional anomaly. First, we generate regions and time periods
sequences, and build a traffic flow matrix based on taxi and
subway data. Then historical anomaly scores are obtained by
comparing real data with predicted data from multi-step pre-
diction LSTM. In the rough anomaly detection, we construct
anomaly characteristics I and get anomaly score I through
OC-SVM. Then we pick the candidate region from the out-
comes. Next, anomaly characteristics II, including historical
anomaly scores, will be put in OC-SVM and tested once
more to get final anomaly region. Ultimately, based upon the
multi-source data of taxi and subway data in real world, this
paper analyzes the traffic flow of the target area and adjacent
areas from different perspectives in view of the large crowd
gathering activities to verify the validity of the model.
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