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a b s t r a c t 

With the emergence of the ever-increasing vehicular applications and booming Internet 

services, the requirements of low-latency and high efficient transmission among vehicles 

become urgent to meet, and their corresponding solutions need to be well investigated. 

To resolve the above challenges, we propose a fog computing-based content transmis- 

sion scheme with collective filtering in edge of vehicles. We first provide a system model 

based on fog-based rode side units by considering location-awareness, content-caching and 

decentralized computing. Then, a content-caching strategy in RSUs is designed to mini- 

mize the downloading latency. Specifically, we model the moving vehicles with the two- 

dimensional Markov chains, and calculate the probabilities of file caching in RSUs to min- 

imize the latency in file downloading. Each vehicle can also maintain a neighbor list to 

record the encounters with high similarities, and update it based on the historic and real- 

time contacts. Finally, we carry on the experiments based on the real-world taxi trajecto- 

ries in Beijing and Shanghai, China. Simulation results demonstrate the effectiveness of our 

proposed method. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Cities are not only a collection of buildings, but also communities where people are closely connected with rich social

interactions and interdependences. The closenesses among citizens often make neighboring people have similar interests,

such as location-based information and the advertisements of nearby supermarkets [14] . Meanwhile, the wide usages of

mobile electronic devices have brought wireless communication and ubiquitous computing to our life. In order to enhance

the connections among individuals, information uploading and downloading among devices require to be fulfilled efficiently

[22] . This calls for new technologies and deployments of location based community communication. 

Nowadays, the number of vehicles has increased dramatically, and a large quantity of data are generated dispersedly. Fog

computing extends the facilities of traditional cloud computing to the network edge, largely deducing the latency caused by

the long distance from terminals to the cloud server. Specifically, the services and applications of fog computing are widely
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decentralized with location-awareness, which provide low-latency and content-aware data dissemination [21] to alleviate

the latency and bandwidth limitation problems, since the near-user devices can work in a collaborative and local way. 

With the advent of advanced devices and technologies, such as vehicular and other mobile applications, the number of

connected devices has grown significantly. Followed that, a great quantity of data generated by devices are immersed in our

daily life [25] . Cisco Global Cloud Index estimates that around 500 ZB of data will be generated by intelligent devices by

2019 [6] . Data storage and processing in cloud-based data centers are facing great challenges, such as the high latency due to

long transmission distances [9,24] . In order to realize the real-time data transmissions in vehicular networks, fog computing

can process the computing tasks at network edges. In fog computing, one or more collaborative end or near-by devices can

be leveraged to implement storage, communication, configuration, measurement and management network functions [28] .

Hence, data transmission in edge of vehicles is an innovative data sharing mode. In another point of view, a vehicle network

also can be seemed as a mobile social network [23] , in which vehicle users meet each other and can establish friendships. It

is entirely feasible to establish reliable transmission links for wireless transmission among vehicles [4] . Therefore, in order

to meet the above requirements, we intend to select vehicles with higher similarities under the fog computing in edge of

vehicles. 

In this work, we propose a Fog computing-based coNtent transmission scheme with Collaborative Filtering (FNCF) in

edge of vehicles. The characteristics of vehicular social behaviors and fog computing are comprehensively considered. The

main contributes of this paper are summarized as follows: 

• Our method fully considers the social behaviors of vehicles, and the similarities among vehicles are established based

on the historic and real-time contacts, with which a user-based collaborative filtering strategy is applied to select

neighboring vehicles for priority transmission. 

• In edge of vehicles, vehicles and Rode Side Units (RSUs) are both equipped with fog devices with the capacities of

content storage and location-awareness. In that case, the content transmission can be implemented in decentralized

ways to reduce content transmission latency. 

• A content-caching strategy in RSUs is designed to minimize the downloading latency. We model the moving vehicles

as the two-dimensional Markov chains. Probabilities of file caching in RSUs can be obtained according to the content

popularity and availability in the constructed mobility model. 

• Performance evaluations are carried based on the real taxi trajectories in Beijing and Shanghai cities, and the results

demonstrate that our scheme outperforms others in both date delivery and downloading latency. 

The rest of this paper is organized as follows. The related researches are described in Section 2 . In Section 3 , we illustrate

the system model together with the problem formulation. The implementation details of FNCF are specified in Section 4 . In

Section 5 , we evaluate the presented method and analyze the obtained results. In Section 6 , we conclude this paper. 

2. Related work 

In this section, we provide an overview of the previous researches about content transmission in vehicular networks. The

existing content transmission methods in vehicular networks can be roughly divided into: random methods, contact-level

mobility based methods, and social-level based methods. 

Random methods, such as random walk [2] based algorithms, can be used in data relay situations without information

forwarding. A neighboring node is randomly selected as the next-hop content carriers. Random walk strategies can generate

moderate network traffic, but often result in large end-to-end latency, such as the epidemic routing in [16] . Specifically,

when a message is flooded in network forwarding, epidemic routing may obtain the low end-to-end latency and high de-

livery ratio. However, random walk strategies can cause unacceptable network overhead [5] . 

Contact-level mobility based algorithms combine the node mobility characteristics with network structures extensively to 

facilitate data forwarding. More than that, Markov chains are applied to model and predict the mobility of vehicles [15,20] .

In these methods, the utility functions are defined to measure node importance. If one message carrier encounters another

neighboring node with a high utility, the message can be forwarded to that neighboring node. With contact-level mobility

based strategies, messages can be delivered effectively, since the prior contact information has been attached on nodes. 

Social-level based methods are proposed with the social relationship tightness [12,13] . By considering the reliability and

latency constraints, power allocation and resource block sharing based on vehicle clusters are studied in [17] . Authors in

[27] propose a hybrid approach by combining Tabu search and the artificial bee colony algorithm to solve the vehicle routing

problem. The experiments on a benchmark data set verify its efficiency. A cooperative caching method in data broadcasting

environments is introduced in [7] to increase the bandwidth efficiency and reduce the data access latency. In addition,

a trajectory-based interaction time prediction algorithm is presented in [10] to improve the service quality of vehicular

applications. In our work, we capture the vehicle mobility characteristics from both the location and contact aspects. 

The scale of vehicular networks increases dramatically. A large quantity of data are transmitted to and processed in the

cloud center. However, the data sources are usually remote to the cloud centers, and cloud-based services cannot guarantee

the low-latency requirements in content transmissions. To overcome the issues of storage, retrieval and management men-

tioned above, fog computing has become a practical solution to enable a smooth convergence between cloud and end-users

for content delivery and real-time data processing [19] . Therefore, fog computing is promising to improve the efficiency of

data transmissions since the edge severs are distributed over surrounding areas [11] . The parked vehicles are viewed as
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Fig. 1. The network architecture in edge of vehicles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

infrastructures in [3] , which provides insights for a novel promising paradigm about vehicular fog infrastructures. Accord-

ing to the previous work, we take advantages of fog computing, and present a perception list of neighboring vehicles for

content-precache transmission in edge of vehicles. 

3. System model and problem formulation 

3.1. System model 

The concept of social vehicles comes from the consideration that drivers can share data with their neighbors based on

common interests [18] . Social networking in vehicles integrates socially-aware networks with vehicular ad hoc networks.

This allows vehicles not only to share contents, but also to select similar neighbor vehicles to improve the communication

efficiency. 

Fog computing can be viewed as a supplement of core cloud services by transforming traditional data center management

to distributed heterogeneous platforms. Hence, fog computing can support edge of vehicles requiring latency-sensitive and

context-aware processing, and Internet of Things (IoT) applications in various areas. In our framework, fog computing pro-

vides prerequisites for content caching and decision making. This is consistent with the requirements of location-awareness,

content caching and high-efficient computing in content transmissions. 

According to the description above, a novel social vehicular framework is illustrated in Fig. 1 , which can be divided into

a traffic physical layer and a mobile social layer. We specify the architecture of FNCF as follows: 

• Vehicle nodes: Urban vehicles can act as the content producers, forward units or end-users. They are equipped with

on-board units and limited caching storage. Hence, vehicles can not only store the information from several neigh-

boring vehicles, but also carry and transmit contents across the urban areas through Vehicle-to-Vehicle (V2V) and

Vehicle-to-RSU (V2R) patterns. 

• RSUs: They are edge infrastructures deployed along the roadside, and equipped with the wireless devices to meet the

requirements of V2R communications. They can make decisions and retrieve data selectively from moving vehicles.

Meanwhile, mobile vehicles can also download contents from RSUs over wireless communications. 

Data transmission in our framework depends on wireless technologies. A link between two vehicles is constructed only

if their distances is no more than the communication range between vehicles and RSUs ( d V 2 R ). The connections of V2V and

V2R communications may be interrupted frequently due to the mobility of vehicles. However, the transmission contents are

usually in large sizes, and can be divided into several subsegments distributed in different vehicles. With the encounter of

vehicles, those segments can be transmitted to the same RSU through moving vehicles, so that they can be merged into the

complete original content. 

In order to maintain the updated vehicular network topology, beacon messages can be periodically broadcasted by phys-

ical links. Vehicles can learn traffic contents from their neighbors, including locations, velocities and other sensed data.
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Table 1 

Definitions of main notations. 

Parameter Definition 

V = { v 0 , v 1 , . . . , v m } Local set of vehicles 

F = { f 0 , f 1 , . . . , f n } Local set of transmission file 

R = { r i j } m ×m Local similarity matrix among vehicles 

r i = { r i j } Similarity vector of v i , r ij equals the value of similarity between v i and v j , i j ∈ { 0 , 1 , . . . , m } 
F sim ( v i , v j ) Similarity between v i and v j 
H sim ( v i , v j ) Historic similarity between v i and v j 
RT sim ( v i , v j ) Real-time similarity between v i and v j 
Nei ( v i ) Neighbor list of v i 
D = { d i j } m ×n File downloading requirement matrix, d ij ∈ {0, 1} 

A = { a 0 , a 1 , . . . , a n } File availability vector 

E = { e 0 , e 1 , . . . , e n } File popularity vector 

buf RSU ( buf V ) Content buffer of RSU (vehicle) 

d V 2 V ( d V 2 R ) Communication range of V2V (V2R) 

B V 2 V ( B V 2 R ) Normalized transmission capacity of V2V (V2R) 

ϑV 2 V ( ϑV 2 R ) Mean downloading rate through V2V (V2R) of f j 
ϱV 2 V ( ϱV 2 R ) Mean transition rate of file piece downloading through V2V (V2R) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Meanwhile, social contacts among vehicles are established in edge of vehicles. In that case, we can build stable V2V links

according to social similarities. 

3.2. Problem formulation 

Since a file can be downloaded through V2V and V2R, the objective function is to get the minimum file downloading la-

tency. We define V = { v 0 , v 1 , . . . , v m 

, m ≥ 0 } as a local vehicle set. Similarly, F = { f 0 , f 1 , . . . , f n , n ≥ 0 } is the file set, in which

each element is an entire file. The downloading requirement matrix is defined as D = { d i j } m ×n , where d ij ∈ {0, 1}. If d ij = 1, it

means that v i requests f j , and vice versa. We define ϱ0 and ϱ1 as the downloading rates of V2V and V2R communications,

respectively. By jointly considering V2V and V2R to minimize the downloading latency, the problem is formulated as: 

min 

∑ 

v i ∈ V 

∑ 

f j ∈ F 
d i j 

(
ψ 0 

f 0 
j 

� 0 

+ ψ 1 

f 1 
j 

� 1 

)
, 

s.t. : 

C1 : f 0 j + f 1 j = f j , f j > 0 , f 0 j ≥ 0 , f 0 j ≥ 0 , f j ∈ F , 

C2 : ψ 0 + ψ 1 = 1 , ψ 0 ∈ [0 , 1] ψ 1 ∈ [0 , 1] , 

C3 : � 0 > 0 , � 1 > 0 , 

C4 : d i j ∈ { 0 , 1 } , i ∈ { 0 , 1 , . . . , m } , j ∈ { 0 , 1 , . . . , n } . (1) 

If v i requests to download f j , it can be divided into two parts, i.e., f 0 
j 

and f 1 
j 
, depending on V2V and V2R communi-

cations, respectively. Variable ψ 0 and ψ 1 are the probabilities that v i download f j through V2V and V2R communications,

respectively. These are corresponding to constraints C 1 and C 2 in Eq. (1) . Constraint C 3 ensures that the downloading rates

of V2V and V2R are no less than 0. Constraint C 4 illustrates the downloading requirements from vehicles. Owning to the

mobility of vehicles, the file downloading procedures may be interrupted frequently. As a result, the way to download files

is decided by the situation whether vehicles are in the coverage of RSUs containing the requested files. Specifically, as long

as v i is in coverage of an RSU containing f j , v i can download f j through V2R communication. Otherwise, it can obtain f j 
merely through V2V communication. 

Consequently, in order to achieve efficient content transmission, both social layer and physical layer information are taken

into consideration to optimize the transmission rates of V2V and V2R communications. In terms of V2V, we estimate the

vehicular trajectories from the social networking aspect and notice that vehicles preferentially share contents with similar

vehicles. Therefore, in our method, a neighbor list is equipped in each urban vehicle. Furthermore, the establishment of V2R

links depends on the distances between vehicles and RSUs. Therefore, we introduce a file caching and updating strategy

based on the Markov model to simulate the vehicular mobilities and states. The main notations used in this paper are

explained in Table 1 . 

4. Fog computing-based content transmission with collective filtering strategy 

This section specifies the implementation details of our designed method, including neighboring vehicle selection based

on collaborative filtering strategy, content-caching mechanism based on the two-dimensional Markov model, and computa- 

tional complexity analysis. 
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4.1. Neighboring vehicle selection based on collaborative filtering 

This subsection evaluates similarities among vehicles based on collaborative filtering strategy. In the social layer, vehi-

cles are more likely to trust and share information with the encounters with high correlations. The social layer connects

physically close vehicles, and enables them to share data. The establishment of V2V links is based on the distances among

vehicles. 

Real-time graphical information, such as GPS and velocity, can be sensed by vehicles. A certain buffer space is also

equipped with vehicles to store neighbors with higher similarities. Then, high priorities can be given to those neighbors

in content transmission. Vehicles sense and record the graphical information of the surrounding vehicles in real time. The

similarities among vehicles are measured based on the historic and real-time contacts. 

4.1.1. Similarity evaluation 

Each vehicle has a unique ID, which provides the necessary condition for updating the neighbor list from encountered

vehicles. For vehicle v i ∈ V , its neighbor list is defined as Nei ( v i ). The relationships among vehicles are represented by matrix

R = { r i j } m ×m 

, i, j ∈ { 0 , 1 , . . . , m } , and the diagonal elements in R are all equal to 0, i.e., the similarity of the given vehicle and

itself is 0. Each row r i , i ∈ { 0 , 1 , . . . , m } in R = { r 0 , r 1 , . . . , r m 

} T stands for a similarity vector. The value of r ij in r i equals to the

similarity between v i and v j . Neighbor list and the corresponding similarities can be updated by the mobility of vehicles. 

For any two vehicles v i , v j ∈ V , if v i and v j encounter in a certain area, F sim 

( v i , v j ) can be calculated by Eq. (2) . The

similarity of two vehicles consists of two parts: real-time similarity RT sim 

( v i , v j ) and historical similarity H sim 

( v i , v j ), which

are expressed in Eqs. 3 and 4 : 

F sim 

(v i , v j ) = α × RT sim 

(v i , v j ) + (1 − α) × H sim 

(v i , v j ) . (2)

RT sim 

(v i , v j ) = 

2(v el i × v el j ) · cos (θ ) 

v el 2 
i 

+ v el 2 
j 

. (3)

H sim 

(v i , v j ) = 

r i · r j √ 

(r i · r i ) × (r j · r j ) 
. (4)

Herein, vel i is the velocity of vehicle v i , and θ is the angular direction difference between v i and v j . RT sim 

( v i , v j ) depends

on the current traffics. If two vehicles have high similarity of direction and velocity, RT sim 

( v i , v j ) is close to 1. Eq. (4) rep-

resents H sim 

( v i , v j ) based on historic contacts. Variable α ∈ (0, 1] is defined to balance the real-time closeness and historic

similarities among vehicles with the user-based collaborative filtering strategy. If v i is a newly joined vehicle, Nei ( v i ) is empty

initially. The similarities between v i and other vehicles are decided by RT sim 

( v i , v j ). The similarity calculation among vehicles

can be divided into the following two situations: 

(1) Nei (v j ) = Nei (v i ) : v i and v j have the same neighbor lists, i.e., each element in r i has a counterpart in r j . Variable

H sim 

( v i , v j ) can be directly calculated by Eq (3) . 

(2) Nei ( v j ) � = Nei ( v i ): Nei ( v i ) and Nei ( v j ) are different. Hence, r i and r j are updated to ˜ r i and ˜ r j with their common neigh-

bors. For example, r ix and r jx cannot be removed in ˜ r i and ˜ r j , only if v x is their common neighbor. Consequently

H sim 

( v i , v j ) can be obtained with ˜ r i and ˜ r j by Eq (4) . If | ̃ r i | = | ̃ r j | = 0 , the historical similarity of v i and v j equals to 0,

and | ̃ r i | is the number of elements in ˜ r i . 

4.1.2. Top k-nearest neighbor formulation 

There are a large number of moving vehicles in certain areas during time intervals. Due to the limited storage in each

vehicle, not all information from neighbors can be stored. In that case, a threshold λ(v i ) is used to decide whether there

exists a strong link between vehicles. We use Eq. (5) to define threshold λ(v i ) : 

λ(v i ) = β

∑ 

∀ F sim (v i , v j ) >γ F sim 

(v i , v j ) 
|{ v j | F sim 

(v i , v j ) > γ , ∀ v j ∈ V }| , (5)

where γ ∈ (0, 1) is a tiny value used to remove some accidental and weak connections. It can eliminate the effects from

accidental weak connections on the overall result, and omit some unnecessary calculations caused by accidental connections,

so that the accuracy of neighbor lists based on similarity ranking can be increased. Variable β is a compensation coefficient.

In FNCF, we only select the top- k nearest neighbors, and store them in Nei ( v i ), i.e., the size of correlation vectors cannot

exceed k . When vehicle v i first enters into the network, neighbor list vector r i is empty. As long as the top- k nearest neigh-

bors are selected according to F sim 

and Eq. (5) , neighbor set Nei ( v i ) and overall correlation matrix R can be updated. With

the k -nearest neighbor lists, vehicles tend to endue high priorities to similar neighbors in content transmission. They have

a large possibility to be the same requirement for a certain file, which can reduce the file retrieve latency from numerous

encounters. 
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Fig. 2. Two-dimensional Markov model to download file for vehicles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Mobility model for vehicles 

Various contents can be transmitted through vehicles and RSUs. Files can be stored in RSUs. In this part, we specify the

content caching procedure of FCNF. The mobility of vehicles is modelled to be a two-dimensional Markov chain. Follow-

ing that, the average file downloading rate through V2V and V2R can be obtained. Finally, the file caching and updating

strategies are designed based on the Markov model. 

Without loss of generality, we assume that each RSU has a finite and identical file buffer, denoted by buf RSU , and buffer

size is represented by | buf RSU |. Vehicles can download contents from RSUs or other vehicles. For example, vehicle v i ∈ V re-

quests file f j ∈ F . An RSU can transmit f j to v i directly, if f j ∈ buf RSU . Otherwise, it can retrieve the vehicles within its commu-

nication range and send the vehicle identities with the cached contents to v i . In that case, all pieces of f j can be downloaded

through V2V. The retrieving of RSUs realizes the directed information sharing among vehicles. The transmission connections

are established unstablely due to the high mobility of vehicles. Therefore, the file downloading procedure can be composed

of sub-downloading sessions from different vehicles or RSUs. In order to avoid interruptions, each file can be divided into

several pieces. A vehicle can finish file downloading as long as it has collected all the file pieces. 

In an urban content transmission system, files are stored in RSUs according to the real-time traffic to minimize the

download latency of mobile users. To be specific, a file can be cached in RSUs only if it is popular and high available within

a particular location. The proportion of vehicles storing files reflects file availability. Popularity indicates the proportion of

vehicles for file requesting. Let D = { d i j } m ×n be the file downloading requirements from vehicles, satisfying d i j ∈ { 0 , 1 } , i ∈
{ 0 , 1 , . . . , m } and j ∈ { 0 , 1 , . . . , n } . If d i j = 1 , it means that v i issues a request for downloading file f j , and vice verse. The

availability and popularity vectors of file set F are denoted by A = { a 0 , a 2 , . . . , a n } and E = { e 0 , e 2 , . . . , e n } , respectively. The

above two vectors are stored in local RSUs. For file f j ∈ F and a target RSU, V represents the local vehicle set, in which

vehicles are in the coverage of RSUs. Therefore, a j and e j can be calculated by Eqs. (6) and (7) , respectively: 

a j = 

|{ v i | f j ∈ bu f (v i ) and v i ∈ V }| 
| V | , (6) 

e j = 

∑ 

v i ∈ V 
∑ 

i<m, j<n d i j 

|{ v i | ∀ f q ∈ F , v i ∈ V, d i,q > 0 }| , (7) 

where buf ( v i ) is the content buffer of v i , and d ij in Eq. (7) represents a local download request. Availability a j can be mea-

sured by the number of vehicles interested in f j , including the carriers and the sources of f j . Meanwhile, its popularity lies

on the number of vehicles requesting f j . 

In order to improve efficiency of V2R, we update availability vector A and popularity vector E with local RSUs in a

distributed manner. RSUs collect the caching and requesting information of files from passing vehicles. Then, they update

the availability and popularity vectors and send them to vehicles. 

As shown in Eq. (1) , we aim to minimize file downloading latency. When d i j = 1 and v i is within the coverage of one RSU

containing f j , v i can access f j through V2R communication pattern. Otherwise, it can only communicate with vehicles. We

utilize a parameter y i ( t ) ∈ {0, 1} to mark the states whether v i is in the RSU communication range. At time t , if v i is within

the RSU communication range, y i ( t ) equals to 1. Then, we can model file downloading process with a two-dimensional

Markov chain. The file are divided into h pieces and encoded from 0 to h − 1 . 

At each time t , moving vehicle v i can be denoted by πi (t) = (y i (t) , χi (t)) , in which y i ( t ) ∈ {0, 1} represents the vehicle

state, and χi (t) ∈ { 0 , 1 , . . . , h } is the observation set, representing the number of pieces that v i has downloaded. Vehicle v i 
changes its state π i dynamically over time. When χi (t) = h, the whole Markov chain of v i terminates. The vehicular Markov

chain is shown in Fig. 2 . The parameter p 0,1 represents the probability that a vehicle changes its state from y (t) = 0 to

y (t) = 1 , so does p 1,0 . The two probabilities depend on the circumstances that whether v i is in the communication range of

a target RSU. Based on the Markov model and file distribution, the average file-downloading rate can be calculated. Then,

the probability of an RSU caching a file can be obtained. When y i = 0 , ϱ0 is the transition rate for one file piece downloading

through V2V before v i finishes downloading file f j . On the other hand, when v i is in the coverage of a target RSU, ϱ1 is the

average downloading rate for one file piece through V2R. We define B V 2 V and B V 2 R as the normalized transmission capacities

of V2V and V2R, respectively. For example, a V2V link L can transmit l file pieces, meaning that the transmission capacity
V 2 V 
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of L V 2 V is l . We consider that there exists u 1 vehicles within the V2V communication range, and vehicles share information

with others within their communication ranges. Let ϑV 2 V denote the average downloading rate, and the average downloading

rate ϑV 2 V through V2V connections can be expressed as: 

ϑ V 2 V = 

B V 2 V 

u 1 + 1 

× (1 − (1 − a j ) 
u 1 ) , (8)

where file availability a j represents the probability that f j is stored in a random selected vehicles. The probability that at least

one vehicle exists to cache f j can be calculated by (1 − (1 − a j ) 
u 1 ) . We suppose that the time for one file piece downloading

through V2V communication corresponds to an exponential distribution, that is 1 /� 0 = (1 /h ) /ϑ V 2 V , where � 0 = h × ϑ V 2 V . 

When v i is within the communication range of a target RSU, v i can download f j through V2R communication as long as

the RSU contains f j . In this case, all the vehicles that have requested f j will compete for the download channels. Similar to

the V2V case, consider that there are u 2 vehicles completing for the V2R channels with v i , the average download rate ϑV 2 R

of v i is expressed as: 

ϑ V 2 R = e j 
B V 2 R 

u 2 + 1 

+ (1 − e j ) × ϑ V 2 V , (9)

where e j is the popularity of f j . In this case, we approximate that the time of downloading one file piece is also exponentially

distributed. Therefore, we can obtain � 1 = h × ϑ V 2 R . 

According to the transmission rate analysis above, vehicle v i starts with state πi (t 0 ) = (y i (t 0 ) , χi (t 0 )) , and its states

change dynamically until all h file pieces are downloaded. In our Markov model, the durations of v i in two states exhibit

exponential distributions with 1/ ζ and 1/ ρ . We suppose that a target RSU caches file f j with probability p j , which is de-

cided by the local availability, popularity and vehicle downloading requirements of f j . Therefore, the probability that v i with

πi (t) = (1 , q ) , q ≤ h, can access f j through V2R is p j . In addition, we can indicate that p j h pieces of files can be downloaded

through V2R. Variable Dt ij denotes the latency of downloading one piece of f j . Under this circumstance, we consider the

vehicular mobility and Markov model comprehensively, aiming to minimize the subjective function in Eq. (1) . In Fig. 2 , the

mobility of v i based on the Markov model can be expressed recursively as: 

π0 ,q 
i 

= 

1 

ζ + � 0 

+ 

� 0 

ζ + � 0 

π0 ,q +1 
i 

+ 

ζ

ζ + � 0 

π1 ,q 
i 

, 

π1 ,q 
i 

= 

1 

ρ + � 1 

+ 

� 1 

ρ + � 1 

π1 ,q +1 
i 

+ 

ρ

ρ + � 0 

π0 ,q 
i 

, 

⇒ ζπ0 ,q 
i 

+ ρπ1 ,q 
i 

= 

�

L 
+ 

ζ + ρ

L 
(ζ� 0 π

0 ,q +1 
i 

+ ρ� 1 π
1 ,q +1 
i 

) + 

� 0 � 1 

L 
(ζπ0 ,q +1 

i 
+ ρπ1 ,q +1 

i 
) , 

⇒ ζ� 0 π
0 ,q 
i 

+ ρ� 1 = (h − q )(ζ + ρ) , 

where � = (ζ + ρ) 2 + ζ� 1 + ρ� 0 , L = ζ� 0 + ρ� 1 + � 0 � 1 , 

Hence, we have: 

Dt i j = 

1 

ζ + ρ
× (ζ × π0 ,q 

i 
+ ρ × π1 ,q 

i 
) 

= 

ζ + ρ

ζ� 0 + ρ� 1 

+ 

1 

ζ + ρ
× ζ� 1 + ρ� 0 

ζ� 0 + ρ� 1 

= . . . 

= 

ζ + ρ

ζϑ 0 + ρϑ 1 

+ 

1 

ζ + ρ
× ζϑ 1 + ρϑ 0 

ζϑ 0 + ρϑ 1 

. (10)

According to Eq. (10) , Eq. (1) can be converted into 
∑ 

v i ∈ V 
∑ 

f j ∈ F d i j × Dt i j . If a vehicle downloads file f j through V2V

with probability p j , latency T = 

∑ 

v i ∈ V 
∑ 

f j ∈ F d i j × Dt i j , which is a twice-differential convex function of p j . Therefore, the min-

imization problem can be converted into a convex optimal problem. With the Karush–Kuhn–Tucker (KKT) conditions, we

can obtain the optimal caching probability p j of file f j by: 

p j = 

∑ 

v i ∈ V 
√ 

H j d i j ∑ 

v i ∈ V 
∑ 

f s ∈ F 
√ 

H s d i j 

, (11)

where H j = ( ζ + ρ) /ρ × ϑ V 2 V + (1 /ζ − 1 /ρ) . In order to obtain the value of H j , ϑV 2 V needs to be calculated by file availability

a j and popularity e j , Specifically, each RSU maintains a buffer and tends to cache files with a large value of 
√ 

H j d i j . 

4.3. FNCF Implementation 

In this part, we specify the implementation of FNCF. With the mobility of vehicles, social behaviors and the precaching

strategy are both taken into consideration. At first, moving vehicles update their neighbor lists according to the similarities.

RSUs cache and update files with probabilities according to Eq. (11) . 
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4.3.1. FNCF algorithm 

In FNCF, vehicles can be the sources and carriers of files. If vehicle v i requests file f j with h pieces, a downloading

request can be sent to other vehicles and RSUs. The whole downloading procedure is demonstrated in Algorithm 1 . The

local connection topologies and the content requesting collection are inputed to run Algorithm 1 at edges. Then, the content

transmission links can be awared and established to improve the efficiency. Finally, the output parameters are whether the

whole file piece can be downloaded, and the uncached number of requests. 

Algorithm 1 Content transmission in FNCF. 

Input: V, F , D, Request 
v i 
f j 

Output: isDownload ed , Uncached Num 

1: isDownloaded = false 

2: for v x in V do 

3: if d v i , v j < d V 2 V then 

4: F sim 

(v i , v x ) = α × RT sim 

(v i , v j ) + (1 − α) × H sim 

(v i , v j ) 
5: r i j = F sim 

(v i , v j ) 
6: end if 

7: end for 

8: Nei (v i ) = topK(r i j ) 

9: while isDownloaded == false do 

10: \∗ no feedback from local RSU 

11: for v x in Nei (v i ) do 

12: Download Request 
v i 
f j 

from v x 

13: Remove the downloaded file piece from Request 
v i 
f j 

14: end for 

15: if Request 
v i 
f j 

== φ then 

16: isDownloaded = true 

17: break 

18: end if 

19: \∗ received feedback from local RSU 

20: if Request 
v i 
f j 

in bu f RSU then 

21: download Request 
v i 
f j 

from RSU 

22: finishDownload = true 

23: else 

24: uncachedNum ++ 

25: Retrieve f j from V send retrieval results to v i 
26: end if 

27: end while 

28: if uncachedNum ≥ μ| bu f RSU | then 

29: Update bu f RSU with availability and popularity vectors, i.e. A and E 

30: end if 

31: return 

When a new file is generated or uploaded to vehicle v i , it will be broadcasted to neighboring vehicles. Hence, v i can

download f j from its top- k nearest neighbors in Nei ( v i ). We suppose that v i can obtain h ′ file pieces of f j from the neighbor-

ing vehicles through stable V2V links. If h ′ > = h, the downloading process is finished. Otherwise, v i can only download the

contents from RSUs or other vehicles. However, if local RSUs do not contain f j , it can be obtained through V2V communica-

tion. 

When a file downloading requests from v i has been sent to an RSU, the RSU retrieves f j in its own buffer. If f j ∈ buf RSU ,

the file pieces can be transmitted to v i through V2R communication. Otherwise, the RSU retrieves f j pieces among all the

vehicles within its coverage. Then, the file pieces can be transmitted to the requesting vehicles through V2V communication.

Meanwhile, v i can record the neighboring vehicles that have transmitted f j through V2V communication in the log files. With

the file retrieval from the RSU, the availability and popularity of vectors can be updated. When the number of uncached file

pieces is larger than μ| buf RSU |, the content buffer is updated through the file probabilities defined in Eq. (11) , where | buf RSU |

is the size of RSU buffer, and μ∈ (0, 1) is a parameter defined for file updating. However, if v i is out of the RSU coverage,

the file downloading requests should be broadcasted before v finishes content downloading. 
i 
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Table 2 

Default settings of vehicles and RSUs. 

Content cache storage of RSUs 400 pieces 

File content cache storage of vehicles 80 pieces 

Communication range of V2V d V 2 V 250 m 

Communication range of V2R d V 2 R 300 m 

Capacity of V2V communication B V 2 V 30 pieces/s 

Capacity of V2R communication B V 2 R 40 pieces/s 

γ expressed in Eq. (5) 0.05 

β expressed in Eq. (5) 0.5 

Message time to live (TTL) 600 min 

Message piece size No more than 5MB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.2. Complexity analysis 

In FNCF, we fulfill the content transmission procedure through V2V and V2R communications. Specifically, the most

time-consuming procedures are neighbor list updating of vehicles and cached content updating of RSUs. The computation

complexity of FNCF is analyzed as follows: 

Consider there are n vehicles and m files in the edge of vehicles, the complexity of similarity calculation by Eq. (2) is a

constant value O ( Ck 2 ), because the size of vehicle similarity vectors is k at most. The top k nearest neighbors are selected

with the complexity O ( log ( k ) n ). Hence, the complexity of neighbor updating procedure is O ( Clog ( k ) n ). Meanwhile, vehicles

can obtain the cached contents through V2R communication before finishing content downloading. RSUs retrieve files from

all the n vehicles within their coverage. Therefore, the complexity of file retrieval is O ( nm ). In the final part, we update

buffers according to the Markov model, the availability and popularity vectors. The two vectors are updated in the procedure

of file retrieval. In that case, we can update RSU buffers with O (| buf RSU | m ), where | buf RSU | is a constant value. In summary,

the complexity of FNCF is O ( Cnm ). 

5. Simulation validation 

We evaluate the proposed FNCF algorithm based on python and matlab. The simulations are carried on data sets with the

realistic vehicular traces containing GPS information, velocities and directions. The data sets contain Beijing taxi trajectories

in November, 2012 and Shanghai taxi trajectories in April, 2017. 

5.1. Simulation setup 

RSUs are deployed uniformly in an urban area, and the distance between two RSUs is between 300 and 500 m. We focus

on public data delivery, such as traffic and weather information in video and text formats. The communication ranges of

V2V and V2R are 250 m and 300 m, respectively [26] . The default settings of our experiment are illustrated in Table 2 . 

We first carry on the experiment to train parameters α, μ and k , with which FNCF is simulated on the one month data

set. During the simulations, each vehicle updates the top- k nearest neighbor list with the collaborative filtering strategies in

average 2 minutes. 

5.2. Performance metrics and comparing algorithms 

Parameter α is used to balance the influences from historic and real-time contacts. If the value of α is too large, the

accuracy can be low due to the accidental contacts from unknown vehicles. Otherwise, the cold starting problem can affect

the accuracies of neighbor lists, resulting in that the vehicles are not sensitive to the traffic environment. On the other hand,

neighbor list updating process is also time consuming. If k is too small, almost all neighboring vehicles will be replaced

whenever Nei ( v i ) updates; otherwise, the updating process can cause a large delay due to the large similarity matrices. 

In our experiment, parameter α, neighbor list size k and uncached ratio μ are set based on the data set. In the parameter

training process, average neighbor accuracy Acc Nei is applied to evaluate the accuracy of the neighbor prediction. For v i ∈ V ,

average neighbor accuracy Acc Nei ( v i ) is a ratio, aiming to evaluate the performance of neighbor prediction strategies. For

vehicle v i requesting f j , there exists s 0 v i neighbors containing f j , and s 1 v i neighbors caching f j can be added to the top- k

nearest neighbor list. Then, we can obtain the average accuracy of v i by Acc Nei (v i ) = s 1 v i / s 
0 
v i . Since the number of moving

vehicles is large, we can calculate the average accuracy of all the moving vehicles over a day by: 

Accuracy = 

∑ 

t< =24 h 

∑ 

v i ∈ V Acc Nei,t (v i ) 
| V | . (12)

The vehicle ID retrieval procedure is time consuming due to the large number of encounters. As the value of k increases,

the latency of each updating process also increases. Therefore, we can make a tradeoff to evaluate the value of k between

accuracy and latency. 
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Fig. 3. Parameter training: α and μ. 

Fig. 4. Parameter training k with α = 0 . 65 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We compare FNCF with three approaches, i.e., ZOOM [29] , a fog-based caching algorithm [1] and SMEA [8] . ZOOM is a

cloud-based method, and the social connections among vehicles are considered. The fog-based caching algorithm [1] is a

decentralized content-precached strategy, but it overlooks the availability and popularity of real-time contents. In SMEA [8] ,

the public-private key encryption-decryption mechanism is used to transmission data in channels. We verify the efficiency

of our method from three aspects, including the cache hit ratio, ratios of successful content delivery and the download

latency for each file piece. 

5.3. Simulation result analysis 

We use data of two weeks (2012.11.01–2012.11.14) in the data set of Beijing taxi trajectories to train the three parameters.

We first set k = 150 to train α. The results are shown in Fig. 3 (a). We can see that when the values of α are in the range

of 0.3 and 0.6, the average accuracy increases with the increasing of α. However, when α is larger than 0.6, the average

accuracies decrease as α increases. This indicates that the proper range of α is [0.6, 0.7]. According to the description above,

we set α = 0 . 65 and k = 150 . Parameter μ is trained to optimize the file updating procedure in RSUs. With part of the data

set (2012.11.01–2012.11.03), the results are shown in Fig. 3 (b). In order to minimize the file updating delay, we set μ in the

range of [0.5, 0.7]. Similarly, the training results of k are shown in Fig. 4 . From Fig. 4 (a), we can observe that when k is less

than 150, the average accuracy increases as k increases. Meanwhile, the latency also enhances as k increases in Fig. 4 (b). We

set a limitation that the computing latency cannot exceed 30% of the trajectory data interval. In that case, k can be no more

than 230. By considering the two criteria comprehensively, we set k within [150, 200]. 

We compare FNCF with three other algorithms from the aspects of cache hit ratio, delivery ratio and latency. The sim-

ulation results are shown in Fig. 5 , Figs. 6 and 7 . According to Figs. 5 and 6 , our method outperforms others in both suc-

cessful delivery ratio and latency. This shows that our proposed strategy can improve the performance of vehicular content

transmissions through V2V and V2R communications. In addition, we explore that how the collaborative filtering neighbor

updating policies influence the content transmission. Neighboring node prediction makes full use of social behaviors that

similar vehicles tend to share the same message, by which the latency of information transmission can be reduced and the

successful transmission ratios can be improved. As Fig. 7 shows, FNCF achieves a earlier and larger convergence in cache hit

ration comparing with that of the fog-based method. 
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Fig. 5. Performance evaluation in Beijing taxi data set: Fig. 5 (a): Comparison of successful delivery ratios over days (2012.11.10–2012.11.30); Fig. 5 (b): 

Comparison of average time latency for downloading a file piece over days (2012.11.10–2012.11.30). 

Fig. 6. Performance evaluation in Shanghai taxi data set: Fig. 6 (a): Comparison of mean successful delivery ratios over days (2017.4.10–2017.4.30); Fig. 6 (b): 

Comparison of average time latency for downloading a file piece over days (2017.4.10–2017.4.30). 

Fig. 7. Cache hit ratio comparison in Beijing taxi data set (2012.11.15). 

 

 

 

 

 

As the prediction accuracy increases in Fig. 8 , the latency of content transmission decreases gradually, and it is reduced

obviously when the accuracy is between 20% and 40%. Similarly, with the increasing of accuracy, the successful data delivery

ratios increase, and begin to converge when the accuracy is close to 40%. This indicates that the neighboring file sharing

based on collaborative filtering can improve the information transmission effectively in the edge of vehicles. The reason for

the occurrences of convergence is that some neighboring nodes are requiring the target files at the same time, and they

cannot share files. 
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Fig. 8. Performance evaluation with prediction accuracy: Fig. 8 (a): Relationship between neighbor prediction accuracy and download latency; Fig. 8 (b): 

Relationship between neighbor prediction accuracy and successful delivery ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusion 

In order to minimize the content transmission latency in edge of vehicles, we construct a novel architecture by consid-

ering fog-computing and collaborative filtering strategy to optimize the content delivery based on V2V and V2R commu-

nications. The V2V communication is designed with a neighbor list kept in vehicles, which stores the information of top- k

closest neighboring vehicles and can be updated with the collective filtering algorithm. Moreover, a two-dimensional Markov

chain is modelled for the moving vehicles. Under the premise of minimizing the downloading latency of V2R communica-

tions, the probabilities of files stored in RSUs are obtained in the Markov model. As a result, the contents are cached and

updated under fog-based RSUs in a decentralized way. The simulation results verify the effectiveness and efficiency of our

method. In the future work, we will consider data permissions to access content downloading. 
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