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Abstract—The Internet of Things (IoT) network allows IoT 

devices to communicate with other devices, applications and 

services by exploiting existing network infrastructure. Recently, 

a promising paradigm, mobile-edge computing (MEC), 

emerging for alleviating high latency data services in cloud 

computing framework plays an important role in the IOT 

network. The network performance and intelligence can be 

improved by integrating cognitive and cooperative mechanisms 

in MEC framework. However, the quality of service (QoS) of 

computational intensive tasks may degrade because of the 

limited available computational resources in MEC servers. 

Moreover, the characteristics of resources belong to MEC 

servers and cloud servers are commonly different. In order to 

optimize the strategy of resource assignment, the tasks of 

assigning the limited computational resources in MEC servers 

and resolving the high latency problem in cloud servers have 

attracted growing interests from researchers. In this paper, we 

propose a joint optimization paradigm for task-driven resource 

assignment based on evolutionary computation considering 

both the power consumption and computation/communication 

delay simultaneously. MEC framework consists of MEC 

servers, mobile devices and cloud servers, and offloads the 

computational resources to the edge of end-users. Additionally, 

we introduce and analyze three typical task-driven based cases, 

which are server-determined condition, server-flexible 

condition, and server-uncertain condition, respectively. Finally, 

we give the existing technical challenges and discuss the open 

research issues. 

I. INTRODUCTION 

In recent years, the number of mobile terminals has grown 
explosively, such as smartphones, wearable devices and vehicle 
terminals. The Internet of Things (IoT) network integrating 
existing network with cognitive and cooperative mechanisms 
has been developed greatly based on the rapid commercial 
application of these mobile terminals. The existing cloud 
computing framework can support numerous PC end-users, but 
cannot provide the diverse services for the increasing number 
of smart mobile devices. From the prediction of Cisco, the 
average number of mobile devices per person will reach 6.58 in 
2020 [1]. Meanwhile, people prefer high-quality mobile data 
services, thus providing satisfied quality of service (QoS) to 
mobile users becomes a critical issue. The term “Fog computing” 
is extended from the concept of cloud computing. Fog 
computing, also known as mobile edge computing (MEC), 
offloads data into the MEC servers, which are close to the end-
users, instead of almost delivering all data and tasks into the 

cloud. MEC servers, such as commercial edge routers, set-top-
boxes and access points, provide service resources at the edge 
of network [2]. There are several fundamental characteristics of 
MEC such as low latency, location-awareness, geo-distribution 
and mobility support that make MEC scalable to extend the 
computing ability from the center to end user at the edge of 
networks by providing elastic and deployable resources. The 
discrimination between cloud computing and fog computing 
can be elaborated in a vivid way as follows. MEC (fog 
computing) is closer to the ground than the cloud, and the data 
for various services is generated on the ground. The data is 
closer to MEC compared with cloud computing. The data and 
computing power in edge computing is moving from data center 
to the edges which are close to users. Compared with edge 
computing, mobile edge computing focuses on the user 
experience of mobile users in cellular networks. 

MEC performs as the intermediate layer between the cloud 
and mobile users, and it is a distributed computing framework 
as well. The computations, communications, control and 
resources services are distributed near to end-users or network 
devices, which are close to the end-users. Consequently, users’ 
requests can be processed in real-time and the deficiencies of 
the cloud computing framework can be alleviated dramatically.  

A large number of MEC servers constitute the MEC 
platform. These MEC servers can be scattered in different 
geographic locations, and they are opposite with the data 
centers whose resources are concentrated. However, it is not 
easy to allocate resources reasonably and provide high QoS for 
mobile users, especially in the scenarios of the mobile devices 
with large scale. In recent years, for the sake of increasing 
networks scalability and reducing power consumption, some 
technologies for relieving the pressure from implementation 
and management of resources have been proposed, such as 
software-defined networking (SDN) and network function 
virtualization (NFV). 

Resource assignment is extremely challenging because of 
the restrictions on bandwidth, energy, storage, computational 
resources of mobile devices. Thus, the coordination among 
MEC servers and cloud servers is required in order to optimize 
the deployment of resources as well as to minimize the 
consumption delay.  

As an essential part of cognitive computing, evolutionary 
computation has attracted much attention in the field of 
resource management and industrial scheduling, etc. 
Evolutionary algorithm (EA) is a random search technique 
which is based on natural selection and natural genetics. The 
core idea of EA is to maintain a balance between exploitation 



2 

 

and exploration in order to find the optimal solution to survive 
in a variety of environments. In the complex solution space, EA 
has strong robustness and searching ability. The existing 
researches prove that EA performs well in combinational 
optimization problems, especially for the applications of 
resource allocation. In this paper, a task-driven resource 
assignment paradigm based on evolutionary computation is 
proposed for MEC. In this framework, the MEC servers and 
cloud servers are both considered, since the QoS of the 
computational intensive tasks may degrade due to the limited 
computational resource in MEC servers. Therefore, these tasks 
offloading to the MEC servers and cloud servers should be 
scheduled jointly. By taking the server condition into 
consideration, we take three case studies to understand the 
resource assignment in MEC system, i.e., server-determined 
condition, server-flexible condition and server-uncertain 
condition. The methods of evolutionary computation have been 
utilized for resource assignment in each condition. We have 
verified the effectiveness of the evolutionary computation 
methods based on synthetic dataset and real world dataset in 
MEC framework. 

The rest of the paper is organized as follows. We first 
analyze and discuss state-of-the-art resource assignment 

techniques for MEC (fog computing) from various viewpoints 
in Section II. Then the task-driven MEC framework based on 
evolutionary computation is proposed and analyzed in Section 
III. The three case studies, analyzing the serviceability and 
advantage of task-driven resource assignment in MEC 
framework, are described in the sequent three sections. The 
main technical challenges and open research issues that should 
be resolved are discussed in Section VII. Finally, we conclude 
the paper in the last section. 

II. STATE OF THE ART 

Due to the resource restriction, resource heterogeneity and 
dynamic nature of resource requirement, the resource 
management in MEC environment is difficult to tackle. 
Resources assignment contributes to utilize the restricted 
resources efficiently and improves the QoS of users, etc. 
Computational requirements offloading to cloud computing 
systems have attracted much attention from researchers, while 
there are few reports about the works of resource assignment in 
MEC. Next, we analyze the state-of-the-art resource assignment 
methods proposed and applied in the literatures. 

 

Table 1. Comparisons of state-of-the-art methods for MEC. 
 Hardware Advantages Computation 

complexity 

Scalability Application delay 

Zeng et al. 
[3] 

Very small, the 
storage servers with 

fixed computational 

resources. 

The network edges are 
equipped with moderate 

storage. 

Low. High. Long queuing delay. 

Gu et al. 
[4] 

Highly capable 
computing base 

stations. 

Integrate MCPS with fog 
computation to construct 

fog computing supported 

MCPS. 

Low. High. Delay are not strict 
since all resources are 

sufficient. 

Deng et al. 

[5] 

Depends on the 

allocated workload. 

The low service delay 

because of the low 

resource consumption. 

High. Low. The trade-off between 

the service delay and 

power consumption. 

Do et al.[6] Small, heterogeneous 
devices with 

moderate computing 
resources. 

Decompose the large 
problem into many sub 

problems. 

Low. High. The latency depends on 
the geographical 

distribution of end-
users. 

You et al. 

[7] 

Minimize mobile 

energy consumption. 

Low-complexity. Low. High. Short latency. 

Liu et al. 
[8] 

Mobile devices and 
MEC servers with 

moderate computing 

resources. 

The one-dimensional 
algorithm with low 

power-constrained delay. 

Low. High. A shorter average 
execution delay. 

Tran et al. 
[9] 

Applications with 
moderate computing 

resources. 

Collaborative MEC 
paradigm. 

Low. High. Short latency. 

Plachy et 
al. [10] 

Base stations with 
moderate 

computation 

resources. 

Flexible selection of 
communication path 

together with VM 

placement. 

Low. High. Short latency. 

Wang et al. 
[11] 

MEC servers with 
moderate 

computation 

resources. 

Service migration using 
the framework of Markov 

Decision Process (MDP). 

Low. High. Short latency. 

Kosta et al. 

[12] 

Dynamically request 

VMs with more 

computational power. 

Thinkair framework, 

migrate smartphone 

applications to the cloud. 

Low. High. Parallelizable 

application reduces 

latency. 

 
Once the data services break off, Zeng et al. [3] suggested 

that returning the remaining resources to the target user. Their 
approach for resource assignment minimize the resource 
consumption. For instance, they would not load the complete 
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image into cloud servers. Instead, multiple parts of image are 
stored in the servers at the edge, and then users can retrieve the 
image from these edge servers immediately and conveniently. 
In order to alleviate the high consumption of computational 
resources in medical cyber-physical systems (MCPS), which is 
the combination of MEC and medical cyber-physical systems, 
Gu et al. [4] minimized the overall consumption by exploiting 
base station association, task distribution and VM deployment 
while satisfied the QoS of users simultaneously. Deng et al. [5] 
designed a representative framework for monitoring the 
communication/consumption delay problem between the fog 
and cloud computing paradigms, and indicated that the minimal 
consumption would be achieved by constraining the 
consumption delay of various services. Furthermore, Do et al. 
[6] considered the carbon footprint and maximized the 
efficiency of resource utilization simultaneously. They 
developed a video streaming service with MEC servers and 
proposed an optimized algorithm with fast convergence. 

In addition, You et al. [7] studied the optimal resource 
assignment strategy with low complexity under the scenarios of 
time division multiple access (TDMA) and orthogonal 
frequency-division multiple access (OFDMA) based systems. 
Liu et al. [8] utilized the Markov Decision Process (MDP) for 
optimizing and deploying the task of resource allocation with 
low delay. A framework residing at the edge of the radio access 
networks (RAN) is envisioned in [9]. The framework comprises 
mobile devices and MEC servers, and the overall resources are 
integrated in the edge servers.  

In terms of the service migration problem, the MDP is a 
widely used framework to determine the migration situations, 
including the time and location of migration. Plachy et al. [10] 
dealt with user's mobility from two patterns: migrating the 
application component or mining an appropriate new path for 
communication between MEC servers and the mobile devices. 
Wang et al. [11] considered the mobility of a user as a two 
dimensional random walk model, and regarded the migration of 
services as an MDP based process on the distance. 

Kosta et al. [12] designed an offloading framework for 

resource allocation based on the cloud architecture and further 

simplified the process of migration between mobile devices and 

cloud. Shojafar et al. [13] proposed an energy-efficient adaptive 

resource management method for maximizing computational 

efficiency, as well as better satisfying the requirements of QoS. 

Ni et al. [14] designed a resource assignment scheme, which 

took the performance metrics such as benefit and energy 

consumption in a task and the creditability evaluation on target 

users, as well as the fog resources into consideration, but it 

ignored other evaluation metrics, e.g., the time complexity of 

their methods, etc.  

In summary, prior works focus on the time and price 

consumption, carbon footprint, energy consumption, etc. Even 

though they consider resource assignment problems from 

different perspectives, the objective of all researchers are 

identical, i.e., to improve application performance and 

maximize the benefits obtained by both service providers and 

users. We list the comparisons of their allocation methods from 

various aspects in Table 1. Most existing works concern that 

MEC have not noticed the scalability of resource allocation 

between MEC and cloud servers. While this paper proposes a 

task-driven resource assignment paradigm based on evolution 

computation that considers the power consumption and 

computation/communication delay, and then introduces three 

representative case studies for efficient application of our 

scheme.  

Previous work mainly focus on cloud servers or MEC 

servers, and they rarely take both cloud and MEC servers 

together to make the resource allocation, especially for some 

typical scenarios in the applications of MEC servers. i.e., the 

tasks in the identical mobile device are ordered as a prior, each 

task can be processed in one specific MEC or cloud server or 

multiple MEC and/or cloud servers, and the processing time of 

each task maybe uncertain. These constraints have not been 

considered in previous work, and the uncertain processing time 

is a typical scenario for task execution in MEC or cloud servers.  

III. WHAT IS TASK-DRIVEN RESOURCE ASSIGNMENT ? 

According to the definitions of International 

Telecommunication Union (ITU), the key indicators for the 

three major application scenarios of 5G are 10Gbps peak 

throughput rate, 1ms delay, 1 million connection number, and 

500km/h high speed mobility. However, in the traditional 

network architecture, the core network is deployed at a far 

location related to users and the transmission delay is large, 

which obviously cannot meet the ultra-low latency service 

requirements. In addition, the transmission of massive data to 

the cloud servers also wastes bandwidth and increases the delay. 

In order to overcome long and unpredicted delay in cloud 

computing mode, the edge computing has been considered as 

an emerging paradigm that supports real-time and mobile data 

services. It has been proved that MEC system is an effective 

framework for resolving the restrictions of 

communication/consumption delay in many applications. The 

MEC server (fog server) such as wireless IP camera, the routers 

and switches are deployed locally, and thus some tasks can be 

executed in the MEC servers. However, the QoS of the 

computational intensive tasks may degrade due to the restricted 

computational resource in MEC servers. If a large number of 

tasks are executed in MEC servers, there may exist vacancy in 

the cloud server. In fact, there are different characteristics 

between the MEC servers and the cloud servers, i.e., they are 

expert in different domains. Meanwhile, mobile users have 

different requirements of QoS. In order to better serve the 

mobile users, the operation of the computational intensive tasks 

offloading to the MEC servers and cloud servers should be 

scheduled jointly, which is called task-driven resource 

assignment.  

An overall architecture of the task-driven MEC framework 

is illustrated in Fig. 1. The service requirements from the 

mobile users are received through the interfaces such as 

keyboard and touch screen. The data transmission has two 

forms: direct data transmission and indirect data transmission 

explicitly. The direct data transmission is to offload the tasks 

into MEC servers or the cloud server directly without 

intermediate layers. 
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Mobile device 1

Mobile device 2

Mobile device 3

Base station MEC server

Cloud server

Local area network

Wide area network

 
Figure 1: Task-driven MEC framework. 

 

As shown in Fig. 1, the tasks of the mobile devices 1, 2 and 

3 can be offloaded to the MEC servers directly without the 

forwarding to the base station. These requirements are 

separately input to the MEC servers through a local area 

network (LAN). The indirect data transmission is to offload the 

tasks into the cloud servers indirectly with the forwarding to the 

base station. As shown in Fig. 1, the tasks of the mobile devices 

1 and 2 can be offloaded to the cloud server indirectly with the 

forwarding to the base station. The unprocessed requirements 

are dispatched to the cloud server from the MEC server via the 

wide area network (WAN), which covers a wide area from MEC 

servers or base station to the cloud server in geography. The 

deployment of MEC servers have close proximity to the mobile 

devices. Compared with WAN, the delay of LAN 

communication can be omitted. We will consider and analyze 

the power consumption of MEC servers and cloud servers, the 

computation/communication delay of MEC, WAN 

communication and cloud computing for further understanding 

MEC servers and cloud servers in MEC framework. 

The resource allocation is related to location distribution of 

MEC servers. If one MEC server is closer to the user than 

another MEC server, then the task offloading of the user’s 

mobile device would delivered to the former MEC server rather 

than the later MEC server. Thus, the location distribution of 

MEC servers would affect the resource allocation strategy. 

EA is a robust and widely used optimization paradigm. It 

has the characteristics of self-organization, self-adaptation and 

self-learning. It enables to solve the complex problem that 

could not be effectively solved by traditional optimization 

algorithms, e.g., combinational optimization problems, NP-

hard problems, etc. Recently, EAs are widely applied in 

parameters optimization, industrial scheduling, complex 

network analysis and resource allocation. In our framework, 

there exist several mobile devices and each mobile device 

provides a certain number of tasks, which will be processed on 

a set of servers in MEC system with a predefined order and 

processing times (communication delays and computation 

delays). The tasks in the identical mobile device are ordered as 

a prior, and each task can be processed in one specific MEC or 

cloud server or multiple MEC and/or cloud servers. The 

processing time of each task maybe uncertain. We should 

formulate the resource assignment in MEC system by taking the 

resource constraint into consideration. This means that we 

cannot optimize the resources allocation problem by only 

considering task order or resource allocation. The resource 

allocation in MEC framework is a typical combinational 

optimization problem, and thus we adopt EAs to solve the 

resource allocation problems in MEC framework for different 

cases as described in the following sections. 

IV. CASE STUDY I: SERVER-DETERMINED CONDITION 

Although there are restricted resources of mobile devices, 
some applications using various techniques, such as machine 
learning, artificial intelligence, and data mining, have to work 
uninterruptedly with seasonable feedback [15]. Nevertheless, a 
common issue, the computation amount with large 
consumption, exists in all the techniques mentioned above. 
Although cloud servers have strong ability of computing, the 
delay caused by the data transmission of traditional approaches 
cannot be acceptable. MEC is leveraged to deploy applications 
and services in which servers are close to mobile devices. All 
tasks of mobile devices can be viewed as different small tasks 
to be processed on each server in MEC system. Since specific 
resources are needed for some issues while not all servers can 
satisfy the requirement, some servers have to be determined for 
certain task, e.g., for image processing, the servers equipped 
with high-performance graphic processing units (GPUs) are 
preferred. 

In this case, we propose a server-determined MEC 
framework. The tasks of mobile devices are assigned to the 
specific servers enabling fixed resources. Various EAs can be 
adopted for this framework, e.g., particle swarm optimization 
(PSO), genetic algorithm (GA), differential evolution (DE), etc. 
Different EAs have different characteristics, and different 
encoding mechanisms affect the performance and robustness as 
well. Besides these, the parameters also play an important role 
in EAs since parameters determine the search direction and 
search domain. 

There exist precedence constraints among the tasks of the 
identical mobile device and each task may be executed in a 
specific determined server. This case study can be regarded as 
the scheduling of task sequence aiming to minimize the total 
processing time. As shown in Fig. 2(a), it can be represented as 
a directed acyclic graph G= (V, A, E), where V is the node set, 
A represents arcs, and E denotes the disjunctive arcs in the graph. 
All nodes in V are divided into two categories including the 
dummy nodes and the task nodes. The set of task nodes consists 
of two dummy nodes: the start node S and the termination node 
F. For each mobile device Dj, the start node links the first task 
node to form the first directed arc, and the last directed arc is 
formed by the connection of last task node with termination 
node. The linked task nodes between node S and node F need 
to be processed with sequence in a predefined order. The pair 
of numbers around each task node represents the specific 
determined server, the corresponding processing time unit, 
respectively. Pairs of disjunctive arcs represent the precedence 
relationships among tasks of different mobile devices processed 
on the identical server. We can obtain a subset E’ from E, which 
represents a viable task sequence when the corresponding graph 
G’ = (V, A, E’) is acyclic, via obtaining one arc among each pair 
of disjunctive arcs. As shown in Fig. 3(b), a subset E’ contains 
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five tasks, i.e., T21, T11, T12, T13, T32, which are marked with red 
rectangles. The length of the longest path from the start node to 
the termination node determines the total processing time of all 
tasks in mobile devices. The larger the number of nodes is, the 
more processing time will be cost for the completion of all tasks.   

S F

T11 T12 T13

T31 T32

T21
T22 T23

(1,3) (2,2) (3,2)
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Figure 2. An example of task-driven resource assignment 
under sever-determined condition. a) an illustration disjunctive 
graph. b) the corresponding Gantt chart. A subset E’ contains 
five tasks, i.e., T21, T11, T12, T13, T32, which are marked with red 
rectangles. 

In Fig. 2(a), D1 (T11-> T12->T13), D2 (T21->T22->T23), D3 (T31-> 
T32) are three mobile devices processed on three servers, i.e., S1, 
S2, S3 in MEC system. Each task needs to be processed on the 
specific determined server with processing time units which is 
marked as (m,n) around each task node. One feasible task 
sequence is obtained from Fig. 2(a) and the corresponding 
Gantt chart is drawn in Fig. 2(b). We can see that the total 
processing time units are 11. 

We evaluate the performance of the task-driven resource 
assignment for determined sever via the simulation results. In 
our scenario, experimental settings and parameters are referred 
from [5], and then we adopt three cloud servers (Internet data 
centers) and five MEC devices in the MEC system. As shown 
in Fig. 3(a), when only MEC servers are used for the execution 
of tasks, the computation delay and power consumption 
increase simultaneously with the increase of the allocated 
resources. When only cloud servers are utilized for task 
execution, Fig. 3(b) illustrates that the computation delay keeps 
steady with the increase of the allocated workload. Instead, the 
power consumption increases. From the numerical results in Fig. 
3(c), it can be known that the consumption of system power 
depends on the power consumption of MEC devices, while the 
communication delay of the WAN has the control over the 
system delay. This reason is that some tasks are executed in 
MEC servers, and the system delay decreases with the 
increasing of the system power consumption. From the analysis 
of stimulation results, cloud server is more efficient and robust 
than MEC server. The MEC servers are deployed closed to the 
mobile users, which is the edge of network. It can be known 
that if we can sacrifice modest computation resources, the 
communication delay can be reduced significantly. 

  

                             (a)                                                               (b)                                                               (c) 
Figure 3: Illustration of power consumption-delay tradeoff by task-driven resource assignment for determined sever in a MEC 

system. a) All tasks are excuted in the MEC servers. b) All tasks are excuted in the cloud servers. c) All tasks are excuted in the 
MEC system consisting both MEC and cloud servres. 

V. CASE STUDY II: SERVER-FLEXIBLE CONDITION 

In case I, the total cloud computing delay is consists of two 

factors: computation delay of cloud computing and 

communication delay of WAN. Even though the 

communication delay of WAN is very short, the resource 

assignment for MEC and cloud servers may be unreasonable 

under sever-determined condition. In addition, there exists an 

inevitable problem, which may delay the entire processing. i.e., 

some servers will not be available in an uncertain time with low 

probability because of crashing, being repaired, etc. However, 

the corresponding users always want to obtain the response of 

users’ requirements in short time. In this case, a server-flexible 

MEC framework is proposed. i.e., a task can be processed on a 

set of available servers rather than on one determined server. 

The efficiency of resource allocation problem operated in 

parallel server environment can be well developed, since it is 

not determined by a predefined order. The communication 

delay may be decreased significantly, and the robustness of 

system comparing with case I can be intensified with more 

flexibility. 
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Figure 4: Gantt charts under two different task-driven resource assignment conditions. a) Server-determined condition. b) 
Server-flexible condition. Each color stands for one mobile device, and the sub-blocks of each color stand for the execution order 
of different tasks in one mobile device. 

In this case, task-driven resource assignment problem can 

be viewed as two sub-problems involving task dispatching and 

resources assignment with the objective to minimize total 

processing time. e.g., n mobile devices are given and each 

mobile device contains a series of tasks to be processed in a set 

of available MEC servers and cloud servers. There exist 

precedence constraints among tasks of each mobile device, and 

all mobile devices are independent of each other. Each task 

must be completed without interruption once it starts.  

The combinational optimization consisting of two sub-

problems results in an NP-hard problem which means it is 

difficult to solve. In this case, the hybridation of the classical 

EAs is preferred because different EAs have various advantages 

and disadvantages. For example, GA is not easy to fall into local 

optima, and it is easy to understand without complex math 

knowledge. However, GA does not perform well in global 

search. PSO has strong ability of global search while PSO is 

weak in neighborhood search and cannot be applied for solving 

problems directly. 
In order to verify the performance of task-driven resource 

assignment for flexible severs, we test our framework with 
synthetic datasets. The number of mobile devices is set as 10, 
and the number of tasks for each mobile devices is set as 3 or 4. 
The number of MEC servers is 8, and the number of cloud 

servers is 2 in our proposed MEC framework. The Gantt charts 
of two problems are given in Fig. 4. It can be seen that the 
computation delay of task-driven resource assignment of 
server-flexible condition is obviously less than that of server-
determined condition. We can draw a conclusion that task-
driven resource assignment of server-flexible condition defeats 
that of server-determined condition in all aspects, such as 
stability, efficiency, maintainability, etc. However, it cannot be 
neglected that task-driven resource assignment of server-
flexible condition, which consists of two sub-problems 
involving task dispatching and resource assignment, has higher 
computational complexity than that of server-determined 
condition. 

VI. CASE STUDY III: SERVER-UNCERTAIN CONDITION 

The idealized computation delay of one task on both MEC 

and cloud servers is fixed in case I and case II. However, it still 

needs to be noticed that uncertain factors undoubtedly exist in 

real MEC framework, e.g., the inserted tasks, the sudden power 

outages, the unavailability of servers, network failure and 

uncertain computational delay. The uncertain factors in MEC 

framework have to be taken into consideration for improving 

the performance of it. These uncertainties may affect the 

response times for users, i.e., the final completion time of all 
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tasks which is the most significant criterion in real MEC 

framework considering users’ experiences. In general, the tasks 

can be offloaded to all servers with the guarantee of internet and 

electricity. Thus, the uncertain computation delay is the most 

significant uncertain factors which cannot be ignored.
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Figure 5: Fuzzy Gantt chart under sever-uncertain condition. 

 

The difference between case III and case II is that the 

computation delay of each task on corresponding server is 

uncertain for case III. i.e., the realized output of a fuzzy 

computation delay of the task only can be known when the 

whole task is completed. In this case study, we model the 

uncertain factor of computation delay based on fuzzy theory 

which is represented by a triangular fuzzy number. In fact, as 

the typical combinatorial optimization problem, the task-

driven resource assignment is necessary to combine the 

mathematical fuzzy number approaches with traditional 

optimization approaches. Thus novel evaluation criteria, 

evaluation model and algorithm also need to be designed. 

As discussed above, the parameters play an important role 

for EAs as well, especially for the cases with uncertainty. 

Therefore, the EAs with parameters self-adaptive mechanism 

are considered in this case. In traditional EAs, the parameters 

are manual setting, and they are given in advance before the 

simulation experiments begin. This setting mechanism is 

weak in the case with uncertainty because the parameters by 

manual setting is time consuming. Moreover, the uncertainty 

cannot be estimated before the cases begin. The ordinary and 

determined parameters setting cannot help EAs achieve good 

performance. On the contrary, inappropriate parameter 

settings may result in worse performance. 

In this simulation, we formulate a mixed integer 

programming model to transform the computation delay into 

fuzzy variables. The task-driven resource assignment for 

sever-uncertain condition can be formulated as an extended 

version of task-driven resource assignment of server-flexible 

condition, i.e., case II. Each task is carried out with the fuzzy 

computation delay 𝑇̃𝑚𝑛={t1, t2, t3} on the server Sn, where t1, 

t2 and t3 represent the minimum value, the most-likely value 

and the maximum value, respectively. The simulation 

parameters are identical with case II except the computation 

delay. In the experiment of case III, the computation delay is 

presented as triangular fuzzy number based on fuzzy theory. 

The fuzzy Gantt chart under sever-uncertain condition is 

shown in Fig. 5. It can be known that the total computation 

delay of all tasks can be predicted even when the computation 

delay of each task is uncertain. In terms of the task-driven 

resource assignment of server-flexible condition shown in 

Fig. 4, if the computation delay of the second assigned task 
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on MEC server 3, i.e., T21, becomes larger, T21 needs to be 

processed behind the completion of the last task on MEC 

server 3. Then the process of T22, T23 and T24 have to wait 

until the completion and release of T21. This leads to the 

unpredicted increase of total computation delay and the 

wasted resources produced by the waiting period. 

VII. CHALLENGES 

The joint deployment on MEC and cloud servers brings 

various benefits to MEC framework. However, there is still 

space for researchers to improve or design new paradigms for 

the task-driven resource assignment in corresponding 

computational mode and resolve the remaining key 

challenges for the fast development of MEC. 

A. Resource constraints 

Compared with cloud servers, the computational and 
stored resources of MEC servers are limited because of the 
limited processing ability of their hardware. We expect the 
computation ability and stored memory in each MEC or cloud 
server to be infinite and have the scalability to support any 
application with arbitrary resource requirements. However, 
this is obviously unrealistic and infeasible. Therefore, the 
resource constraints for both the MEC and cloud servers 
should be considered during the process of resource 
assignment.  

B. Large scale 

The number of MEC or cloud servers may not satisfy the 
large requirement of tasks with the restricted computational 
and storage resources. In real world applications, there are 
many mobile devices, and various mobile devices can 
provide various data services, which means that these devices 
are still growing in quantity. Thus, new framework of 
evolution computation, which is suitable for distributed 
computing, should be designed to deal with numerous tasks 
in mobile devices.   

C. Security 

Although the combination of MEC and cloud servers for 
MEC framework has the efficient response for mobile users, 
the security is still a significant issue that cannot be neglected. 
The compatible trust information can be exchanged among 
trust management systems, while MEC framework can 
perform well even when these trust information belong to 
different trust domains. This is the potential safety loophole 
that will harm the MEC trust management systems. Therefore, 
new encryption mechanism of exchanged information should 
be performed when designing MEC framework. 

VIII. CONCLUSION 

In this article, a task-driven resource assignment 
framework is proposed for improving MEC system, which 
integrates both the MEC and cloud servers. Particularly, we 
study three task-driven cases, sever-determined condition, 
sever-flexible condition and sever-uncertain condition for 
resource assignment based on evolutionary computation, 
while the computation delay of each task on corresponding 
server is uncertain for the server-uncertain condition. 
According to different cases, EAs with various mechanisms 

are discussed, e.g., the hybridation of EAs, the parameters 
self-adaptive, etc. The performance evaluations on three 
different conditions are analyzed and compared. We 
highlight the existing technical challenges and open issues for 
the safe and stable development of MEC systems, and the 
encouragement of new paradigms of task-driven resource 
assignment for MEC systems. We believe that task-driven 
MEC system will attract more attentions and efforts from 
researchers before long, and the technologies for integrating 
MEC servers and cloud servers will be widely developed. 
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Figure 1: Task-driven MEC framework. 
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Figure 2. An example of task-driven resource assignment under sever-determined condition. a) an illustration disjunctive graph. 
b) the corresponding Gantt chart. A subset E’ contains five tasks, i.e., T21, T11, T12, T13, T32, which are marked with red rectangles. 
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(c) 
Figure 3: Illustration of power consumption-delay tradeoff by task-driven resource assignment for determined sever in a MEC 

system. a) All tasks are excuted in the MEC servers. b) All tasks are excuted in the cloud servers. c) All tasks are excuted in the 
MEC system consisting both MEC and cloud servres. 
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Figure 4: Gantt charts under two different task-driven resource assignment conditions. a) Server-determined condition. b) 
Server-flexible condition. Each color stands for one mobile device, and the sub-blocks of each color stand for the execution order 
of different tasks in one mobile device. 
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Figure 5: Fuzzy Gantt chart under sever-uncertain condition. 
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