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Abstract— A co-occurrence pattern is an interesting pattern in
human mobility, which has essential values in business intelli-
gence, social activities, and urban planning. However, due to the
deluge and complexity of mobile big data, as well as the compli-
cated intrinsic features of the co-occurrence pattern, mining and
analyzing the co-occurrence pattern are computationally highly
expensive. Therefore, in this paper, we propose a framework
to mine co-occurrence event data from mobile data and to
explore the urban co-occurrence pattern visually. Our framework
contains two modules: data modeling, to obtain the co-occurrence
event data effectively utilizing frequent itemsets mining algorithm
based on traffic GPS records, and visualization, to explore the
co-occurrence pattern in urban scenarios from global, regional,
statistical, and location perspectives. Our visualization system has
been demonstrated using case studies with a real-world data set.

Index Terms— Co-occurrence pattern, human mobility,
spatiotemporal data, visualization.

I. INTRODUCTION

THE rapid popularization of wireless communication
infrastructure and high-speed advancements in data

acquisition technologies lead to the explosive growth in the
size and variety of data, including a large number of data
which directly track human trajectories such as telecommuni-
cation data, and various crowdsourced data that hide residents’
tracks, such as smart card data [1], [2]. The analysis of human
mobility attracts the research interest of scholars mainly due
to its extensive applications in numerous fields, especially in
urban computing, such as passenger flow prediction [3], [4],
route planning, functional regions mining, and abnormal traf-
fic events detection [5]. Human mobility contains diverse
interesting subpatterns, such as black holes, which have the
overall inflow greater than the overall outflow, volcanos, which
have the overall outflow greater than the overall inflow [6],
and lark patterns, which refer to people used to going out early.
In this paper, we focus on co-occurrence patterns, which
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Fig. 1. Examples of co-occurrence patterns in the same urban area at different
time periods. (a) Co-occurrence pattern at 5:00–6:00 P.M. (b) Co-occurrence
pattern at 7:00–8:00 P.M.

denote people from two regions visit an urban region within
a certain time period. It emphasizes regional relations.

In order to better understand co-occurrence patterns,
we present two examples shown in Fig. 1. In Fig. 1(a), five
people from workspace A and two people from workspace B
visit shopping mall A, respectively, from 5:00 P.M. to 6:00 P.M.
Three people from workspace A and four people from
workspace B go to shopping mall B, respectively, in the
same time period. Therefore, we say that a co-occurrence
event between workspace A and workspace B occurs in
shopping mall A as well as in shopping mall B. Similarly,
from 7 p.m. to 8 p.m. in the evening, three people from
residential area A and four people from residential area B visit
shopping mall A. A co-occurrence event between residential
area A and residential area B occurs in shopping mall A.

Based on analyzing urban co-occurrence patterns, we can
infer interesting temporal and spatial information, such as
regions that people from the same functional regions prefer
to co-occurring, and regions that people (who visit certain
regions frequently) come from [7]. Therefore, shop owners
can carry out targeted promotional activities according to the

2329-924X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2592-6830
https://orcid.org/0000-0001-8006-4845
https://orcid.org/0000-0002-8324-1859


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

types of groups that go shopping at special time periods, such
as young office staffers or seniors. By studying empirical
networks of human contact from co-occurrence patterns, an
infectious disease model can be built to pave the way for con-
trolling contagious disease transmission based on big data [8].
Benefiting from the characteristic that co-occurrence patterns
are more sensitive to crowd assembling, urban co-occurrence
pattern-oriented anomaly detection is a quite potential research
direction [6]. In other words, such patterns have essential
values in business intelligence, social activities [9], [10], and
urban planning [11].

Whether people visit a region depends on various fac-
tors [12]. For distance, the possibility of choosing a near
region is higher than that of a distant region. Weather also
has an impact on travel; people tend to stay home if the
weather is bad. In terms of occupations, freelancers avoid the
stress of commuting time. Personal preferences are unignored,
and people tend to shop in shopping malls in their favorite
stores. Human mobility brings comprehensive results of inter-
actions between multiple factors including regional functions,
interregion distances, and personal preferences [13]. In other
words, human mobility is a complex sequential transition
regularity with a high degree of time dependence and spatial
dependence [14]. Its time dependence manifests itself not
only in the changes of human mobility over time but also
in multilevel periodicities, weekly or monthly. In addition,
trajectory data usually contain a variety of attributes, such as
spatial property, temporal property, and even semantic property
[15]. The data have strong heterogeneity and embrace sparse
trace information. Therefore, the analysis of co-occurrence
patterns based on the trajectory data is extremely challenging.

Therefore, we seek the help of visualization techniques to
reduce the difficulty of the co-occurrence analysis [16]. Data
visualization, as the name suggests, is to present data in an
intuitive form. In recent years, with the fiery research of big
data, the superiority of visualization in analyzing data has been
discovered and widely used. Visualization can merge machine
intelligence and human wisdom, to help extract truly useful
information from overwhelming data. Hence, in this paper,
we propose a visual system COOC to explore co-occurrence
patterns from trajectory data.

The major contributions of this paper can be summarized
as follows.

1) We propose a co-occurrence event data mining scheme
utilizing frequent itemsets mining algorithm based on
traffic GPS data.

2) We design a novel visual form to display the global
co-occurrence pattern and integrate it with other state-
of-the-art visual techniques to explore the urban co-
occurrence pattern.

3) We demonstrate that our framework can help users get
interesting insights and effective analysis from multiple
perspectives based on a real-world data set.

II. RELATED WORK

We provide an overview of related studies in this section.
Two most relevant topics, co-occurrence pattern mining and
visualization of many-to-many relations, are in focus.

A. Co-Occurrence Pattern Mining

Co-occurrence patterns show great value in various fields,
including biological symbiosis [17], mobile phone user
application mode [18], and computer vision [19]. In this
paper, we focus on spatial–temporal co-occurrence pattern in
urban human mobility, which represents subsets of event types
that occur together in both space and time. The computational
expensiveness and the excessive data size cause the great resis-
tance of the co-occurrence pattern analysis. So, a monotonic
composite interest measure for discovering mixed-drove
spatiotemporal co-occurrence pattern (MDCOP) and a novel
MDCOP mining algorithm are proposed to improve the
computational efficiency [20], [21]. Pillai et al. [22] present
a general framework to identify the spatiotemporal co-
occurrence patterns for continuously evolving spatiotemporal
events that have polygon-like representations. Specifically
designed spatiotemporal indexing techniques are utilized to
mine the co-occurrence pattern from spatiotemporal data
sets [23]. Hong et al. [6] propose a two-step black hole
detection algorithm based on a well-designed spatiotemporal
graph index. Machens et al. [8] build an infectious disease
model on empirical networks of human contact to bridge
the gap between dynamic network data and contact matrices.
Akbari et al. [24] design a method to extract implicitly con-
tained spatial relationships algorithmically, to deal with differ-
ent feature types that are with points, lines, and polygon data,
to mine the spatiotemporal co-occurrence pattern in space and
time, and they apply this method on a real case study for air
pollution.

A co-location pattern is highly similar but different from
the co-occurrence pattern. It represents subsets of spatial
features whose instances are often located at close spatial
proximity [25]. A spatial co-location rule issue is different
from the traditional association rule because there is no
natural notion of transactions in spatial data sets embedded in
continuous geographic space. Using the concept of proximity
neighborhood, Huang et al. [26], [27] provide a transaction-
free approach to mine the colocation pattern, and they address
the problem of mining the co-location pattern with rare spatial
features.

In summary, co-occurrence pattern mining is challenging.
Due to its nature of interdisciplinary integration, association
relationship mining algorithms, visualization techniques, and
many other methods are applied in research on co-occurrence
patterns. In this paper, we understand the co-occurrence
pattern in human mobility from frequent patterns (FP) and
mine co-occurrence event data effectively utilizing classical
frequent itemsets mining algorithms.

B. Visualization of Many-to-Many Relations

In the previous examples of the co-occurrence pattern,
we can see that a co-occurrence event is the relation of
two regions and one region. Many co-occurrence events
form co-occurrence patterns, and the relation turns into a
complex relation between multiple regions and multiple
regions. Researches on how to visualize the relation between
multiple entities and multiple entities have arisen, which
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Fig. 2. Example of checking out at a supermarket. (a) Your basket.
(b) Couple’s basket. (c) Woman’s basket.

provide the technical support for our work. Yang et al. [28]
design a new visualization called MapTrix to illustrate the
dense many-to-many flow and compare its effect with a
bundled node-link flow map representation and OD maps.
An interactive visual analytics system called TelCoVis is
presented to help analysts leverage their domain knowledge
to gain insight into the co-occurrence in urban human
mobility based on telco data [11]. Biclusters represent two
sets of related entities with close relationships, and we
regard bicluster as a special kind of co-occurrence pattern.
A five-level design framework for bicluster visualizations is
proposed to provide a potential solution to ease the process of
exploring and identifying coordinated relationships (e.g., four
people who visited the same five cities on the same set of
days) within some large data sets [29]. Zhao et al. [30]
propose a visualization technique, named BiDots, which
overcomes several limitations by encoding biclusters in a
more compact and cluster-driven manner to allow analysts to
interactively explore biclusters over multiple domains.

Based on the research of visualizing biclusters and many-
to-many relation, we design a novel visual form, circular
view, to present the global co-occurrence pattern intuitively
and combine it with other state-of-the-art visual techniques
to explore the urban co-occurrence pattern from multiple
perspectives.

III. BACKGROUND

There are various facts about the origin of co-occurrence
patterns. Some scholars think that the co-occurrence pattern
is a variant of the co-location pattern [25]. In this paper,
we understand and mine co-occurrence patterns in human
mobility from the perspective of FPs.

Assume that you are lined up to check out at a supermarket,
and there are milk, bread, and butter in your shopping basket,
as shown in Fig. 2(a). Then, you notice that the couple in
front of you is paying for milk, bread, and cereals, as shown
in Fig. 2(b), and the shopping basket of the woman behind you
contains milk, bread, sugar, and eggs, as shown in Fig. 2(c).
Furthermore, you find that the three baskets all contain milk
and bread. Does this mean that if customers buy milk, they
are likely to buy bread at the same time? The relationship
between goods in shopping baskets, which reflects customers’
shopping habit, is exactly the basis to make good marketing
strategies for retailers.

In FPs, each entity is an item, and a set of items form
an itemset. A frequent itemset is an itemset that appears in
the transaction data set frequently. For example, the set of

milk and bread forms a frequent itemset, which appears in
the above shopping baskets example frequently. Just as the
shopping baskets example reveals the relationship between
items that appear in the same shopping baskets at the same
time, we focus on the relationship between regions which
appear in the same region at the same time. (The statement
that region A appears in region B means that there is a travel
from region A to region B.) The research entity is exactly a
region, so the itemset is the set of regions, and the frequent
itemset is the set of regions that frequently appear in the same
region. So, from the perspective of human mobility, we define
a co-occurrence event as follows.

If people from a set of regions Ra visit another set of
regions Rb at a certain time period frequently, we say that
“regions in Ra co-occurs with each other at Rb.”

Then, how do we determine if an event is frequent enough?
Support is a primary and important index for FPs, and it
forms the basic support-confidence framework together with
confidence to measure the interest of the rules to reflect their
usefulness and certainty. Support is defined as the frequency
of an itemset in the transaction data set. In co-occurrence
patterns, we define the support of an event as the number
of destinations where the set of regions Ra visit at a certain
time period, that is, the number of regions in set Rb.

Then, we need to set a minimum support minsup. Just as
only the itemset that satisfies minsup is a frequent itemset,
only an event that meets minsup is a co-occurrence event.
We assume that R is a frequent itemset. If there is no set larger
than R, which has the same support as R in the transaction
data set, then R is closed and called a closed frequent itemset.
Similarly, if there is no set larger than R, which is frequent in
the transaction data set, then R is a maximal frequent itemset.
The statement that set A is larger than set B denotes that
B is a subset of A and at least one item in A does not
belong to B . The difference of closed frequent itemset and
maximal frequent itemset is that the support of all subsets of a
closed frequent itemset is datum and is the same as that of the
closed frequent itemset, while the maximal frequent itemset
only guarantees that its all subsets are frequent. The process of
mining FP is actually looking for all closed frequent itemsets
because closed frequent itemsets store all the information of
FP. An important property of frequent itemsets, which is worth
paying attention to, is transcendental nature, which refers to
that all nonempty subsets of frequent itemsets are frequent.
This property is widely used in FP mining.

In the FP analysis based on the shopping baskets example,
researchers only focus on bread and milk appearing in shop-
ping baskets and the number of goods being ignored. In Fig. 1,
we can see that the quantitative relationship among regions,
such as two people and five people, is crucial to the analysis
of co-occurrence patterns in human mobility and is unignored.
So, we provide a detailed definition of a co-occurrence event
as follows.

If a set of people Flow = { f11, f12, . . . , f1m , f21, . . . , fmn}
from a set of regions Ra = {a1, a2, a3, . . . , am} visits another
set of regions Rb = {b1, b2, b3, . . . , bn} at a certain time,
where n ≥ minsup, we can say that “regions in Ra co-occurs
with each other at Rb.”
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IV. SYSTEM ARCHITECTURE

With a multilevel and multiperspective analysis of co-
occurrence patterns as the design goal, we compile a list of
analytical tasks.

R1 (Global Exploration): How do co-occurrence events
distribute throughout the city? What is the co-occurrence
interaction among regions? How do co-occurrence pat-
terns change over time? Such information can help users
understand co-occurrence patterns in the global city.

R2 (Regional Exploration): What are co-occurrence patterns
between a concrete region and all other regions? How
do these co-occurrence patterns change over time? What
is the time-varying law of the co-occurrence quantity?
When the co-occurrence pattern is specific to a certain
region, the information above will be quite attractive.

R3 (Location Exploration): Human mobility is highly
location-dependent. So, what are locations of regions
that are involved in co-occurrence events you are inter-
ested in? Regional functions have closed relationship
with human mobility. What kinds of regional functions
do these regions possess? Furthermore, how do we
accurately extract the desired location information from
a map with complicated information? These challenges
need to be solved in the location exploration.

R4 (Statistical Exploration): Human mobility is highly
time-dependent. After obtaining the distribution of co-
occurrence patterns, users will be interested in the
time-varying law of global co-occurrence patterns and
regional co-occurrence patterns from multiple time
dimensions, such as months, weeks, days, or even hours.
In addition to co-occurrence quantity, traffic flow among
regions is also of interest to users. These tasks will be
settled through the statistical exploration.

Based on such analytical tasks, we design the COOC system
to visualize co-occurrence patterns as a meaningful form.
Fig. 3 presents the system architecture, which is composed
of two modules: data modeling module and visualization
module. In data modeling module, based on the raw data
set, we first perform data preprocessing operation, including
data cleaning from multiple aspects or organizing data into
a database. Then, we execute time division, region division,
and transaction construction to construct the data structure of
the preprocessed data. Following that we utilize an efficient
FP mining algorithm to mine co-occurrence event data from
the data with a good data structure. Finally, we integrate
the extracted co-occurrence event data and analytical tasks to
conduct the visual design. Our visualization system consists
of four parts, and each part contains one or more views to
support the corresponding analytical tasks.

V. DATA MODELING

In this section, we first describe the data preprocessing and
then introduce how to construct the data structure. Finally,
we present how to mine co-occurrence event data effectively.

A. Data Preprocessing

Our system is based on taxi GPS data. The collected
raw GPS data have a great number of error records due to

Fig. 3. System architecture of COOC.

complex attributes. What is more, for our analytical goal, there
are redundant fields. Therefore, adequate data preprocessing
operations are necessary. Co-occurrence patterns focus on
origins and destinations of human travel instead of actual
trajectories. Thus, GPS records without passengers are useless
and are filtered out. Then, we extract trajectory data from GPS
records according to taxi ID, and OD data can be obtained
from trajectory data. Travel time, travel distance, and average
speed are the directest indicators of one trip. We calculate
the three indicators of OD data. Most urban road planning
complies with rectangular rules. We use Manhattan distance
to get travel distance based on the longitude and latitude
information of origins and destinations. Manhattan distance
is also called taxi distance, and its calculation formula is as
follows:

Distance = d[(Olat, Olng), (Olat, Dlng)]
+ d[(Olat, Dlng), (Dlat, Dlng)] (1)

where Olat, Olng, Dlat, and Dlng stand for origin latitude,
origin longitude, destination latitude, and destination longitude
respectively, and function d utilizes the latitude and longitude
information to get distances. That is, Manhattan distance is
the sum of the horizontal distance and the vertical distance
between the origin and the destination. We set thresholds
of travel time, travel distance, and average speed to further
improve data quality by eliminating OD records whose field
values are too high or too low.

B. Data Structure Construction

We perform data structure construction for better co-
occurrence event data mining. In this paper, the definition of
co-occurrence events is based on time periods and regions.
Therefore, we need to convert temporal and spatial information
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TABLE I

STATISTICS OF TRAVEL TIME

of OD data into time periods and regions, which are exactly
the time division and region division.

1) Time Division: In order to analyze co-occurrence pat-
terns under the same granularity of time division, we adopt
regular time division instead of irregular time division, and
the division formula is as follows:

Timei = [iθ, (i + 1)θ), i = 0, 1 . . . n − 1 (2)

where i is the number of a time interval and there are n time
intervals. θ is the length of a time interval. For selecting an
appropriate time division granularity to analyze co-occurrence
patterns, we perform statistics on travel time and display the
result in Table I. For taxi travel, the percentage of travel time
increases rapidly within 30 min, and then the growth rate
slows down significantly. Moreover, about 80% travel time
is within 30 min and we set θ as 30 min for the fine-grained
analysis to convert the temporal information in OD data into
time intervals and to quantify time points with the number of
time intervals i .

2) Region Division: Taxis travel along road networks in the
city. Thus, we refer to a road network-based region division
method [31] and incorporate it into our data modeling module
instead of a rough grid division. Urban roads, which are
densely distributed, have multiple levels. Therefore, we select
the most important roads in the road network, including
highways, primary roads, and secondary roads, and map them
into a binary image. Dilation operation is performed on the
image to eliminate small gaps to avoid too small regions in
the final division. Then, we thin the width of roads as a pixel
and set the pixels that belong to a region as the same number.
Finally, we delete the pixels representing roads. In this way,
we divide the entire city into 542 regions, and the spatial
information in OD data is also converted to the number of
each region.

3) Transaction Construction: After time division and region
division, we can obtain time intervals and the number of
regions in OD data. The core of co-occurrence patterns in
human mobility are regional relations. According to FP mining
algorithms, we need to extract transaction data sets, that is,
using OD data to build transactions. In the same time period,
we aggregate the OD data according to destinations to get the
set of regions going to the same destination. A transaction
indicates that people from a group of regions arrive at one
destination within a certain time interval. Fig. 4 presents an
example of transaction construction, in which the trip from the

Fig. 4. Example of transaction construction.

1st region to the 5th region and the trip from the 3rd region
to the 5th region construct a transaction whose destination is
the 5th region and origin set contains the 1st region and the
3rd region.

C. Co-Occurrence Data Extracting

There are two types of classical frequent itemset mining
algorithms. One is the a priori algorithm, and the other is the
FP-growth algorithm [32]. The former uses an iterative method
of layer-by-layer search, to continuously construct candidate
sets and to filter candidate sets, to mine frequent itemsets.
The mining process requires many scans of transaction data
sets. When the data size is large, for instance, GPS data,
the algorithm is quite inefficient. The FP-growth algorithm
compresses transaction data sets through FP-tree data structure
to obtain frequent itemsets with only two scans of transaction
data sets. It is much more efficient than a priori algorithm.
This is why we choose this algorithm to mine co-occurrence
event data.

Han et al. [33] first proposed the FP-tree structure and
proposed an efficient FP-growth algorithm based on such
a structure. FP-tree is a special kind of prefix tree, which
consists of frequent item header tables and item prefix trees.
The FP-tree construction process is to sort transaction data
items in transaction data table according to support and to
insert the data items of each transaction in descending order
into a tree with null as the root node, and at the same time,
to record the support of the current node at each node.

The FP-growth algorithm continuously compresses
construction and projection of FP-tree, that is, to compress
the database that provides frequent itemsets into an FP-tree and
to reserve itemsets’ association information. The algorithm
constructs a conditional projection database and projection
FP-tree for each frequent item. This process is repeated
for each new-constructed FP-tree until the constructed new
FP-tree is empty or contains only one path. When the
constructed FP-tree is empty, its prefix is the FP. When the
constructed FP-tree has only one path, FPs can be obtained
by enumerating all possible combinations and connecting
them with the prefix of this tree. Items in header table of
FP-tree need to be sorted in the descending order. First, items
cannot share the prefix without sorting. Then, sorting in the
ascending order will cause items appearing frequently to be
in branches of trees and items cannot share more prefixes.
Otherwise, sorting in the descending order will make frequent
items to appear in upper layers of trees. They can be shared
by more items as prefixes. The detailed construction processes
of FP-tree and FP-growth can be found in [33].
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Fig. 5. Interface of our visual design. (a) Circular view shows the regional distribution and temporal distribution of co-occurrence patterns in the global
scope. (b) Topology view presents the spatial distribution of co-occurrence regions and interactions between regions. (c) Cyclic heatmap view presents the
co-occurrence patterns of specific regions. (d) Regional boundary map supports the location exploration. (e) Stacked view shows the statistical information of
a certain type of functional regions. (f) Line view refines the statistical information to a specific region.

TABLE II

EXAMPLES OF CO-OCCURRENCE EVENT DATA

Table II presents the examples of extracted co-occurrence
event data. Field TimeId is the serial number of time intervals,
which is from 1 to 48. Field Destination and field Origin
are the destination set and the origin set, respectively. Field
Support is the number of elements in the destination set,
and field k is the number of elements in the origin set.
Take line 1 shown in Table II for example. It implies that
in 1st time interval, that is, from 00:00 A.M. to 00:30 A.M.,
people from the 535th region visit 214th, 348th, 357th, 370th,
and 380th regions. Moreover, we obtain the interregional flow
data, as displayed in Table III, which contains the flow from
an origin to a destination. In Section VI, we describe how
to form a co-occurrence pattern visually exploring design
based on co-occurrence event data and interregional flow
data.

TABLE III

EXAMPLES OF INTERREGIONAL FLOW DATA

VI. VISUAL DESIGN

This section introduces a set of visualization techniques that
assist users in exploring co-occurrence patterns from global
regional scope and its time-varying statistics.

A. Global Explorer

Before performing detailed exploration, users tend to grasp
what the overall situation is (R1). Therefore, in the global
explorer part, we are committed to providing a global overview
of co-occurrence patterns from the perspective of regional
distribution and interregional interaction. This part consists of
two views, topology view and circular view.

Topology view mainly presents the spatial distribution of
co-occurrence regions and interactions among regions.
We regard a region as a vertex, a co-occurrence event as
an edge to build a global co-occurrence network, which is
exactly the topology view, as shown in Fig. 5(b). We use
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the degree of vertexes to denote their size so users can
intuitively grasp regions with the greatest co-occurrence
strength. Here, we define the co-occurrence strength as
the number of co-occurrence events between the selected
region and other regions. We extract center points of regions
to aggregate regions to points, and the relative positions
of vertexes are the mapping of regions’ geographical
locations. Thence, users can obtain spatial attributes of
regions to explore the spatial distribution of co-occurrence
patterns. In addition, combined with regional functions data,
vertexes in the topology view are divided into six categories,
corresponding to six regional functions. Users can select only
one or more regional functions to display and to explore
the global co-occurrence distribution of a concrete kind
of regions or co-occurrence interaction of several kinds of
regions. In the design of the topology views, we filter out
regions without co-occurrence events, i.e., isolated vertexes,
to help users focus on vertexes with the high co-occurrence
strength without interference. Topology view is implemented
by Echarts, an open-source, web-based, cross-platform
framework that supports the rapid construction of interactive
visualization [34]. Parameter k in the topology view and other
views means the number of origins involved in co-occurrence
events.

The topology view provides co-occurrence interactions
among regions. We design a novel visual form, circular view
[Fig. 5(a)], to display the regional distribution and temporal
distribution of co-occurrence patterns in the global scope. The
entire circle is divided into 542 sectors (corresponding to
542 regions in the region division), and each sector represents
a region. Then, the sector is further divided into 48 subsec-
tors (corresponding to 48 time intervals), and each subsector
represents the co-occurrence information of a region at a time
interval. The regions in the topology view are consistent with
the elements in Ra of the co-occurrence event definition,
and we say that they have co-occurrence events. The regions
displayed in the circular view are consistent with the elements
in Rb, that is, the places where co-occurrence events occur. In a
co-occurrence event, we need pay attention to not only regions
which have the co-occurrence event but also regions where
the co-occurrence event occurs. Such a subsector represents
the number of co-occurrence events that occur in the region
within a certain time interval, and we use color to represent the
quantity. The darker the color, the more co-occurrence events
occur in the region. If there is no co-occurrence event during
the time interval, the subsector is blank.

Furthermore, we attach a subview to present co-occurrence
events that occur in a region. In the subview, we use a
line to represent regions that participate in a co-occurrence
event. A line is divided into multiple sublines (the number
of sublines depends on the number of regions participating
in the co-occurrence event), i.e., each subline represents
a region. The length of sublines is the distance between
regions, and the color denotes the flow. In this way, if users
find an interesting region in the circular view, they can
click on it to generate its subview to further observe its
co-occurrence events and to understand co-occurrence
strength or density.

Fig. 6. Thumbnail of the statistical explorer.

B. Regional Explorer

When conducting global exploration, users may find an
interested co-occurrence event or region, which requires a
more detailed display. We apply cyclic heatmap view to
present co-occurrence patterns of specific regions. In this
view, the co-occurrence pattern of a region is distributed with
time increasing in a clockwise direction, as shown in Fig. 5(c).
We divide the whole circle into 48 sectors (a day has 48 time
intervals), and each sector represents co-occurrence patterns
during the time interval. Each sector is subdivided into
multiple subsectors that represent the co-occurrence between
the selected region and other regions, which co-occur with the
selected region. The color of subsectors denotes the number
of co-occurrence events. The darker the color, the more
co-occurrence events occur. In this way, users can get the
co-occurrence distribution of a concrete region in a day and
understand characteristics of co-occurrence patterns by views,
like time variation of co-occurrence event density and regions
that co-occur with the selected region most closely.

C. Statistical Explorer

In previous views, no matter global explorer or regional
explorer, they are all qualitative observation of co-occurrence
patterns. Then, it is quite necessary to analyze co-occurrence
patterns from the quantitative point of view, that is, statisti-
cal analysis. Two most important attributes of co-occurrence
patterns are time and space. We divide the two attributes
into multiple dimensions. Time attributes include the gradual
refinement of months, weeks, days, or even hours. Space
attributes include two dimensions, a type of functional regions
and a specific region. We utilize two views, stacked view and
line view, to present above co-occurrence statistics. Stacked
view shows the statistical information of a certain type of
functional regions, and users can select one or more functional
regions [Fig. 5(e)]. Time dimensions are implemented by
selecting a time scale, such as 30 min or one day. Users
also can customize the time range displayed in the view
by sliding time axis. In order to provide the guidance for
time selection, we attach the overall thumbnail to the view,
as shown in Fig. 6. Line view [Fig. 5(f)] is to refine the above
statistical information to a specific region with similar time
selection function to facilitate users to observe co-occurrence
patterns of a specific region. Both stacked view and line view
include the statistics of co-occurrence events and statistics of
inflow and outflow.

D. Location Explorer

Human mobility has a high degree of spatial depen-
dence, so maps cannot be ignored in the view design.
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Fig. 7. Co-occurrence events’ number of residential area (red), workspace (orange), education (green), business (blue), public service (purple), and scenery
spot (pink). (a) 1st April. (b) 2nd April. (c) 3rd April. (d) 4th April. (e) 5th April. (f) 6th April. (g) 7th April. (h) 11th April. (i) 12th April.

Fig. 8. Flow of residential area (red), workspace (orange), education (green), business (blue), public service (purple), and scenery spot (pink). (a) 1st April.
(b) 2nd April. (c) 3rd April. (d) 4th April. (e) 5th April. (f) 6th April. (g) 7th April. (h) 11th April. (i) 12th April.

Traditional maps contain complex road network information
and point of interest information. In our co-occurrence pattern
exploration, we only need to know the spatial locations of
regions. Therefore, traditional maps are obviously not applica-
ble and we design a regional boundary map to support the
location exploration, as shown in Fig. 5(d). In conjunction
with the region division results of Shanghai, we replace
the traditional maps in a concise manner, allowing users to
focus on the region information rather than the additional
information. We use a closed path to describe the contour
of a region. We first obtain the dot matrix of region contour
and then sort dots so that connecting all dots in sequence to
draw lines can form a closed path, which represents region
contour, and a concise map is generated. Contour view serves
as an auxiliary view to provide the spatial information for the
whole design.

E. Interaction

We add rich interaction in our visualization system COOC
to encourage users in performing co-occurrence patterns from
multiple dimensions and multiple perspectives.

1) Connectivity: In the system, apart from the stacked view,
other views are intrinsically connected. If you click on a region
in the topology view or circular view, not only the subview
will be generated, but also cyclic heatmap view and line view
will be converted to the corresponding information.

2) Filtering and Highlighting: Users can choose what to
display in the view, such as regional functions, time range,
types of co-occurrence events, and types of flow (inflow or out-
flow). The system highlights the part that users are interested
in by providing tips in each view to show more detailed
information and highlighting the selected part through the
change of display effect.

TABLE IV

DESCRIPTION OF TAXI GPS TRAJECTORY DATA

VII. CASE STUDIES

To evaluate the system, we carry out case studies based on
taxi GPS data set collected from April 1–30, 2015, Shanghai,
China. The data set consists of several fields, including state,
speed, date, time, and geographical coordinates, as displayed
in Table IV. The data set contains 34 billion GPS records and
is 619 GB. In this section, we provide how to explore urban
co-occurrence patterns from multiple levels of time granularity
and space granularity, that is, from monthly, daily, to hourly,
and from the global scope, functional regions, to specific
regions gradually.

First, we grasp an overview of global co-occurrence pat-
terns in the month. We select co-occurrence event stacked
views and flow stacked views of weekdays, holidays, and
weekends, respectively, as shown in Figs. 7 and 8. Among
the selected days, 1st, 2nd, and 3rd are weekdays, 4th, 5th,
and 6th are Qingming Festivals, 7th is the first weekday after
holidays, and 11th and 12th are weekends. By comparing
Figs. 7 and 8, we can see that the number of co-occurrence
events is significantly lower than flow, but flow is less sensitive
to different types of days, and time-varying patterns of flow
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Fig. 9. Topology views of residential area (red), workspace (orange), education (green), business (blue), public service (purple), and scenery spot (pink).
(a) 1st April. (b) 2nd April. (c) 5th April. (d) 7th April. (e) 11th April.

Fig. 10. Topology views of business (blue). (a) 1st April. (b) 2nd April. (c) 5th April. (d) 7th April. (e) 11th April.

Fig. 11. Circular views of business. (a) 1st April. (b) 2nd April. (c) 5th April. (d) 7th April. (e) 11th April.

Fig. 12. Circular views of business on 5th April. (a) k = 2. (b) 253rd region, k = 2. (c) k = 3. (d) 253rd region, k = 3. (e) k = 4. (f) 253rd region, k = 4.

are basically similar, that is, flow reaches trough at 4:00 A.M.,
during days’ flow is generally flat with a few slight peaks
and troughs. Co-occurrence patterns are more sensitive to
different types of days. In co-occurrence event stacked views
(Fig. 7), time-varying patterns on 2nd and 3rd are similar,
those on 4th, 5th, and 6th are similar, and those on 11th and
12th are similar, i.e., among weekdays, mondays, tuesday, and
wednesday; thursday and friday have different co-occurrence
patterns, respectively, holidays have special patterns, and pat-
terns on weekends are different from above all. Moreover, co-
occurrence density at night is relatively low.

Following that, we refine the level of time granularity to
daily. We choose topology views of the time period from
6:00 to 24:00 on 1st, 2nd, 5th, 7th, and 11th to further explore
urban co-occurrence patterns, as shown in Fig. 9. Topology
views present that co-occurrence density on weekdays is
low and evenly spreads across the city; co-occurrence events
are concentrated in urban centers on weekends. What is

more, co-occurrence events of business regions represented
by the blue color are obviously denser than other functional
regions. Urban centers own an explosive co-occurrence
density on holidays. As the first weekday after Qingming
Festival, the co-occurrence density of 7th is much greater
than common weekdays. We further obtain topology views
of business regions to acquire the expansion of co-occurrence
events on weekends and holidays, as shown in Fig. 10. The
co-occurrence patterns of functional regions can be obtained.

Such outbreak of co-occurrence events is also reflected in
the circular views (Fig. 11), and the co-occurrence density
of the circular view on 5th April is significantly higher than
that of other circular views. Here, we notice a region, which
shows large co-occurrence strength and through interaction
operations, we find that it is the 253rd region. Obviously,
the co-occurrence patterns of the 253rd region are desir-
able to explore further. By clicking this region, we can get
Fig. 12. The value of k indicates the number of origins
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involved in co-occurrence events. The region shows the high
co-occurrence strength with different k values. What is more,
the lengths of sublines in subviews are relatively short, indicat-
ing that distances between regions are short. We further look
for the points of interest data of the 253rd region and find that
this region is located in the urban center with many residential
areas scattered around. Therefore, the co-occurrence events of
this region are mostly short distance trips between residential
areas to nearby shopping malls.

VIII. CONCLUSION

In this paper, we present a framework to mine co-occurrence
event data from mobile data and to explore urban co-
occurrence patterns visually. The framework embraces two
modules. The first one is data modeling, which consists of
preprocessing, data structure construction, and co-occurrence
data extraction. Based on extracted co-occurrence event data,
we perform the visualization module, which is composed of
global exploration, regional exploration, statistical exploration,
and location exploration. What is more, we design a circu-
lar view, a novel visual form, to display urban global co-
occurrence patterns intuitively. Case studies based on the real
taxi data set demonstrate that our visual system can provide
interesting insights and analysis of the co-occurrence pattern
exploration.

There are several directions to follow in our future work for
further research of urban co-occurrence patterns. First, we plan
to apply COOC to a variety of real-world data sets to mine
the general laws of urban co-occurrence patterns. In addition,
we tend to build a general model hidden in co-occurrence
patterns. Abnormal detection based on co-occurrence patterns
will also be considered in the future work.
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