
2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2868616, IEEE Internet of
Things Journal

1

A Cooperative Partial Computation Offloading
Scheme for Mobile Edge Computing Enabled

Internet of Things
Zhaolong Ning, Peiran Dong, Xiangjie Kong and Feng Xia

Abstract—With the evolutionary development of latency sensi-
tive applications, delay restriction is becoming an obstacle to run
sophisticated applications on mobile devices. Partial computation
offloading is promising to enable these applications to execute
on mobile user equipments with low latency. However, most
of the existing researches focus on either cloud computing or
Mobile Edge Computing (MEC) to offload tasks. In this paper,
we comprehensively consider both of them and it is an early
effort to study the cooperation of cloud computing and MEC
in Internet of Things (IoTs). We start from the single user
computation offloading problem, where the MEC resources are
not constrained. It can be solved by the branch and bound algo-
rithm. Later on, the multi-user computation offloading problem
is formulated as a Mixed Integer Linear Programming (MILP)
problem by considering resource competition among mobile
users, which is NP-hard. Due to the computation complexity of
the formulated problem, we design an Iterative Heuristic MEC
Resource Allocation (IHRA) algorithm to make the offloading
decision dynamically. Simulation results demonstrate that our
algorithm outperforms the existing schemes in terms of execution
latency and offloading efficiency.

Index Terms—Mobile edge computing, partial computation
offloading, Internet of things, resource allocation.

I. INTRODUCTION

M obile User Equipments (UEs), including smart phones
and laptops, have recently set off a new wave with the

evolution of Internet of Things (IoT). Traditional applications
are difficult to meet the increasing requirements of IoT-based
UEs, such as Quality of Service (QoS). Recently, a number of
novel applications emerge and are quickly favored by users,
e.g. image identification, online games, augmented reality and
Internet of vehicles [1] [2]. Although CPU becomes more
and more powerful nowadays, applications running on mobile
devices still intend to offload full or partial computation tasks
due to their limited computing or hardware capabilities [3].
Strict delay restrictions have become an obstacle to run so-
phisticated applications on mobile devices [4], with the result
that UEs cannot handle large amounts of computing tasks in
a short period of time. Moreover, we cannot only rely on
programmers to do endless code optimization. Consequently,
computation offloading is one of the most efficient way to
reduce the execution delay of applications.

Z. Ning, P. Dong, X. Kong and F. Xia (corresponding author) are with the
Key Laboratory for Ubiquitous Network and Service Software of Liaoning
Province, School of Software, Dalian University of Technology, 116620,
Dalian, China. Email: f.xia@ieee.org.

Z. Ning is also with State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing, 210008, China.

Mobile Cloud Computing (MCC) used to be viewed as a
promising approach to offload the computation tasks, since
rich computing resources can significantly reduce application
processing latency. However, task offloading to the cloud
server, spatially far from UEs, can cause high transmission
delays. With existing infrastructures, we can hardly reduce
network delays between servers and base stations. To over-
come these limitations, a new technology, called Mobile
edge computing (MEC), is advocated. Compared with MCC,
MEC has the following characteristics: 1) Closeness: Edge
computing occurs near data sources. The key idea of MEC
is to bring the computing and storage resources of central
servers to the network edge as well as in the proximity of
users [5]. 2) Diversity: More than RoadSide Units (RSUs), any
computing or networking resource, such as vehicles, can be
an edge device, whose computing capability is also distinct.
3) Resource-constrained: Computational resources for MEC
within a particular area are limited, and edge nodes or servers
generally have lower computing capability than cloud servers.

When the offloading technique is applied, computation
partitioning problem is one of the fundamental issues [6]. Con-
sider that the application consists of a series of modules, thus
the aim of computation partitioning is to decide which module
to be offloaded and how to be executed (locally or remotely),
such that the overhead can be minimized. To conduct such an
offloading decision, there are several challenges as follows:

• Traditional offloading schemes are based on two kinds of
entities: the UEs and the cloud server or the UEs and the
MEC server. Few studies consider the synergy between
MCC and MEC, which can not only balance the load of
servers, but also guarantee the QoS of IoT UEs.

• Studies in recent years have mostly focused on single-
user offloading problems. However, in a multi-user en-
vironment, the user’s decision depends not only on the
overhead it saves, but also the interference among users.

• To optimize the execution delay or battery energy con-
sumption of the application, the offloading model is
often constructed as a user independent offloading model.
However, users interact with each other and compete for
computing resources. Under the premise of the multi-user
situation, computing resource restriction should be taken
into account.

Although both MCC and MEC are able to realize time-
saving and energy-efficient traffic offloading, few existing re-
searches study their cooperation. In this paper, we demonstrate



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2868616, IEEE Internet of
Things Journal

2

that MCC and MEC are suitable for different scenarios and
they are complementary with each other. When the number
of IoT-based UEs is no more than twice of the number of
MEC servers, MEC provides better service than MCC with
its advantage of short transmission delay. However, if the
number of users increases, the advantage of rich computational
resources in MCC is highlighted.

We start from the single-user computation offloading prob-
lem, which can be solved by the branch and bound algorithm.
Then we extend it to the multi-user model, which is formulated
as a Mixed Integer Linear Programming (MILP) problem. By
taking both MEC resource restriction and interference among
IoT-based UEs into consideration, the multi-user computation
offloading problem is much more complicated than the existing
offloading problems. Since the formulated MILP problem is
NP-hard, we design an Iterative Heuristic MEC Resource
Allocation (IHRA) algorithm for the multi-user computation
offloading problem. The average execution time, including
data transmission time and processing time, is the optimization
target, because it is the most significant indicator for high
computation demanding and latency sensitive applications.
IHRA can obtain the optimal offloading decision with low
computational complexity, so that the average execution la-
tency can be largely reduced. The main contributions of our
work are as follows:

• To the best of our knowledge, our work is an early effort
to integrate MCC and MEC for computation offloading.
We comprehensively consider the characteristics of the
abundant computing resources in MCC and the low
transmission delay in MEC, to ensure that the designed
offloading framework is suitable for different network
scenarios.

• We model the single-user computation offloading prob-
lem as an MILP problem at first. Then in multi-user
situation, both MEC resource constraint and interference
among multiple users are taken into account. The multi-
user computation offloading problem is formulated as an
MILP problem, which is NP-hard to solve.

• Due to the complexity of the formulated problem, we
design an iterative heuristic MEC resource allocation
algorithm to solve the multi-user computation offloading
problem. Its computational complexity is O(N(M +
log2 N)), where M and N are the number of servers
and UEs, respectively.

• Performance evaluation demonstrates the effectiveness of
our solution in terms of execution latency and offloading
efficiency. In order to utilize network resources efficiently,
we can obtain a suitable ratio of the number of MEC
servers and users according to the simulation results, i.e.,
the number of the MEC servers is half of the number of
IoT UEs.

The rest of this paper is organized as follows. In Section II,
we review the related work. We specify the system model and
problem formulation in Section III. Section IV describes the
proposed iterative heuristic MEC resource allocation algorithm
for the multi-user computation offloading problem. Perfor-
mance evaluations are illustrated in Section V, and Section

VI concludes our work.

II. RELATED WORK

The computation offloading and resource allocation attract
the attention of many researchers in recent years. The exe-
cution latency [7], [8] and energy assumption [9], [10] are
usually two criterions for offloading performance evaluation.

A. Full Offloading

The authors in [7] propose a one-dimensional search algo-
rithm to minimize the execution delay, which takes application
buffer queueing state and available processing powers into
account. Dynamic voltage and frequency scaling and energy
harvesting techniques are utilized in [8] to optimize the data
transmission for computation offloading, which can also re-
duce the failure of offloading applications. In [11], the authors
construct a three-layer traffic system to minimize the average
offloading response time. Queueing theory is applied to model
the moving vehicle-based edge nodes. In [12], the authors
design a jointly optimizing scheduling and offloading strategy
to promote Quality of Experience (QoE). With the average
execution delay constraint, the energy consumption can be
largely reduced. However, most of the current studies merely
consider the single user situation [13] [14].

In [15], all UEs are divided into two groups according
to the amount of data that they need to offload. The UEs
in the first group are allowed to access the MEC server,
while the second group can only process tasks locally. The
optimal transmission power can be determined according to
the allocation of communication and computation resources.
In [16], the authors focus on reducing the saturated backhual
bandwidth by collaborative edge computing in wireless mesh
networks.

B. Partial Offloading

The authors in [17] formulate the partial offloading problem
as a non-linear constraint problem and solve it by linear
programming. In [18], an optimal resource allocation policy
is designed by sorting the application latency constraints in a
Time Division Multiple Access (TDMA) based system. The
authors in [19] present an energy-optimal partial offloading
scheme, depending on the maximal application latency con-
straint. In [10], an iterative algorithm is proposed to find the
optimal value of the transmission rate in uplink. The authors in
[20] formulate the energy consumption minimization problem
by taking the application buffer into account. An online
algorithm based on Lyapunov optimization is proposed to
decide the optimal CPU frequency and transmission task, as
well as allocate the bandwidth resources. In [21], a resource
block scheduling problem is formulated in narrowband-IoT.
The heuristic algorithm considers both power control and relay
selection.

C. Collaboration of MCC and MEC

Multi-user computation offloading problem is more com-
mon and complex than single user problem. In [19], multi-
user computation partitioning problem is formulated as an



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2868616, IEEE Internet of
Things Journal

3

Fig. 1: A partial computation offloading example.

MILP problem and solved by a greedy heuristic algorithm.
The shortcoming of this work is that it neither considers the
collaboration of MCC and MEC, nor takes the interference
among users into consideration. The authors in [22] take the
interference among users into consideration. However, it fo-
cuses on full offloading and does not consider the collaboration
of MCC and MEC. Different from the studies above, this paper
comprehensively considers the cooperation of MCC and MEC,
where IoT-based UEs can either offload their tasks through
MCC or MEC depending on the execution latency.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section mainly specifies the system model and formu-
lates the investigated problem. The system model includes the
application model and the computation offloading framework
model. The problem description begins with a single user and
extends to multiple users.

A. System Model

There are various mobile applications emerging in the past
few years. We mainly focus on computation-intensive and
delay-sensitive applications, which require high computational
capability as well as low execution latency to satisfy user QoE.
IoT-based UEs with low latency requirement applications,
such as applications based on augmented or virtual reality,
online gaming or remote desktop, may profit from computation
offloading to the cloud or MEC [23].

Basically, one UE consists of a code analyzer and a system
manager [24]. The code analyzer is responsible to determine
which part of the application can be offloaded, depending
on application types and equipment hardware conditions.
The main factor affecting whether applications should be all
offloaded or partial offloaded is the type of application. For

Fig. 2: The application of augmented reality framework ARkit.

example, if the application consists of modules whose input
data is private information of users, such as the name, and
ID card, then it should be partial offloaded. Otherwise, it
can be all offloaded. The system manager is in charge of
monitoring various parameters, including available bandwidth,
computation capability, the offloaded data size and UE’s
transmission power. Computation partitioning, also known as
partial offloading, is a complex and challenging process, which
needs to consider many factors, such as users’ privacy, com-
munication link quality, UE’s capabilities, cloud capabilities
and resource availability [25]. Generally, a significant factor,
influencing the decision of either full or partial offloading, is
the ability of offloading [23]. If the application is composed
of non-offloadable parts (e.g., user input data and position
information), those parts can only be executed locally on
UEs while the rest of the application can choose either to be
offloaded to the remote server or not. An illustrative example is
shown in Fig.1, and the whole application is executed locally
on UE1. UE2 offloads its second module to the MEC server,
and the fourth together with the fifth modules are offloaded to
the cloud server, while the rest is processed by the local device.
The first and second half of the application are offloaded by
MEC and MCC, respectively.

All modules of the application can be either independent
or interdependent. In this paper, we simplify the complex
application module dependency system into a linear sequence
processing module, as shown in Fig.2. It is the application of
augmented reality framework ARkit. First, augmented reality
application is a typical complex and delay-sensitive applica-
tion. Second, the ARkit framework can be divided into several
independent submodules. The above two points are in line
with the research conditions of this paper. So we choose the
ARkit framework. Moreover, the proposed model is still appli-
cable when extending to other applications whose submodules
are linear independent. We can simulate these applications
by adjusting the number of submodules and the amount of
offloaded data. Non-linear applications with complex internal



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2868616, IEEE Internet of
Things Journal

4

dependencies are beyond the scope of this paper. In Fig.2,
arrows reflect the dependencies among modules. The output
of the previous module is the input of the next module. Each
module can be executed on three entities, i.e., user equipments,
RSUs and cloud. For an application, the very first input data
is initiated on the local device. Thus the input data of the first
submodule comes from UEs. However, the first submodule
itself does not have to be executed locally. Similarly, when the
entire application is completed, the very last output data should
be transmitted back to the local device. In order to facilitate the
formula description, two additional virtual modules are added
to the framework. Since the consumption of computation
energy is far less important than execution latency in terms
of delay-sensitive applications, the performance indicator is
the latency. It represents the whole execution time of the
application, including all modules’ computation time and data
transmission time among the modules executed on different
platforms. Although the ARkit does not have non-offloadable
parts, the proposed model is still suitable for those applications
with non-offloable parts. For those non-offloadable submod-
ules, we can manually initialize it to the form of yi,j,α = 1 in
the simulation, which represents that they are executed locally.

B. Single User Computation Offloading

We start from the Single user Computation Offloading Prob-
lem (SCOP), in which only one user makes the computation
offloading request. As mentioned previously, we model the
application of IoT-based UEs as a linear sequence processing
program, which includes η modules. Each module can choose
to be either offloaded to the remote server or processed locally
on UEs. The processing time of module j by local processing,
edge offloading and cloud offloading are pLj , pEj and pCj
respectively, where pLj > pEj > pCj . The data transmission
time between two adjacent modules j-1 and j is tj , if the
two modules are processed on different platforms; otherwise,
the transmission time can be ignored. Notice that the very
first input/last output data should be from/to the local user
equipment. Thus, two additional modules 0 and η + 1 are
added to the linear sequence model as virtual input and output
modules for the application.

Given the computation cost pj (1 6 j 6 η) and data
transmission cost tj (0 6 j 6 η + 1), the SCOP makes the
decision that which modules should be offloaded onto the edge
node or the cloud, so that the total execution delay can be
minimized. The investigated problem is formulated as follows:

minDelay =

η∑
j=1

pj +

η+1∑
j=1

tj , (1)

s.t.

pj = αpLj + βpEj + γpCj ,

Fig. 3: An example of SCOP offloading schedule.

where α+ β + γ = 1, and

α =

{
1, if the task is processed locally,
0, otherwise.

β =

{
1, if the task is processed by the MEC server,
0, otherwise.

γ =

{
1, if the task is processed by the MCC server,
0, otherwise.

The variable pj has relationship with data size and CPU
processing power, while tj is affected by the communication
environment, such as the channel bandwidth. Both pj and tj
will be analyzed in detail in Section III.C in conjunction with
the multi-user problem.

An illustrative example of SCOP solution is shown in Fig.3.
Six modules of augmented reality application are assigned to
the appropriate platform for processing as shown in Fig.2.
Each module receives the output data of the previous module
as the input data. The cooperation of MEC and MCC enables
latency sensitive applications to run on IoT-based equipments.

C. Multi-User Computation Offloading

In this subsection, we study the problem of multi-user
computation offloading. The multi-user hierarchy computation
offloading model is shown in Fig.4. The IoT-based UEs send
offloading requests to the Small Evolved NodeBs (SeNBs),
which make offloading decisions to the MCC server or the
MEC server. SeNBs are usually close to users and MEC
servers, so the transmission delay is small. Its computing
power is also stronger than that of the user equipment,
which can perform the offloading scheduling quickly. If SeNB
is overloaded in prosperous areas such as the city center
and train stations, we can adopt a joint scheduling scheme
for distributed SeNBs. Neighboring SeNBs can be used to
complete the excessive scheduling tasks, which can meet
users’ demands with a little bit performance degradation on
the execution delay. Notice that multi-user models are not
simply superimposed by single-user models. In SCOP, we do
not consider the interference among users, since the whole
channel is allocated to the single user without any resource
competition. In Multi-user Computation Offloading Problem
(MCOP), users’ competition for channel resources challenge
the offloading process. As a result, the total transmission time
of multi-user is larger than that of the single user.

We consider there are λ user requests within a time slot,
and the number of users is relatively stable within each time
slot. All IoT-based UEs are in the same frequency band, where



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2868616, IEEE Internet of
Things Journal

5

Fig. 4: Multi-user hierarchy computation offloading model.

the interference among users exists [22]. The total bandwidth
B is divided into N channels. Users upload requests and
data to the SeNBs by Orthogonal Frequency-Division Multiple
Access (OFDMA), where every user in the same channel is
orthogonal to others and each channel can only be allocated
to one user. Each computation task τi,j = { di,j , ci,j }, where
di,j is the input data size of the ith user’s jth module, and
ci,j is the required CPU cycles to complete the computation
task. For each task, it can be processed either locally on IoT-
based devices or remotely on MCC/MEC servers. The total
execution time consists of two parts, i.e., processing time pi,j
and transmission time ti,j .

1) Processing time: We define f l
i , fe

k , f c as the computa-
tion capability (i.e., CPU-cycle frequency) of IoT-based UEs,
MEC sever and MCC server, respectively. Herein, f l

i and fe
k

are relevant to the processing power of different users and
edge nodes, and f c is fixed during the computation offloading
[19], [26]. When offloaded task τi,j is processed locally, the
processing time pLi,j,0 is:

pLi,j,0 =
ci,j
f l
i

, (2)

When the task is offloaded onto the edge node, the process-
ing time pEi,j,k is:

pEi,j,k =
ci,j
fe
k

, (3)

where k denotes the kth MEC sever (1 6 k 6 M ). When task
τi,j is processed on the cloud, the processing time pCi,j,M+1

can be calculated by:

pCi,j,M+1 =
ci,j
f c

, (4)

where the (M + 1)th server denotes the MCC server. As
mentioned before, task τi,j is arranged to be processed at
one of the three platforms, so that we can calculate the total
processing time by:

pi.j = αpLi,j,0 + βpEi,j,k + γpCi,j,M+1, (5)

where α+ β + γ = 1.

2) Transmission time: Generally, users send input data to
the edge node or the cloud through SeNBs instead of sending
directly, thus SeNBs undertake the task of scheduling in our
offloading model. If users intend to make offloading decision
by themselves, they need real-time information of the MEC
and MCC servers. That is to say, although we can reduce
the transmission time of the offloading request, additional
transmission delay can be caused. When the SeNB is in the
proximity of the MEC server in local regions, the transmission
time can be omitted [27] [28]. In addition, due to the fact that
the size of output data delivered from the remote server to the
local device is much smaller than that of the input data, the
time overhead of the backhual link can be ignored [28] [29].
Therefore, we mainly focus on the upload link from the local
device to the SeNB and the SeNB to the cloud server.

We define three binary variables yi,j,α, yi,j,β and yi,j,γ to
denote whether the jth module of the ith user is executed
locally, by the MEC server or by the MCC server, respectively.
If user i offloads modules to remote server k through SeNBs
on channel n, the achievable transmission rate ri,k,n can be
calculated by:

ri,k,n = ωlog2(1 +
pi,k,nhi,k,n

σ2 + Ii,k,n
), (6)

where ω is the bandwidth. Since total bandwidth B is divided
into N channels, ω = B/N . The variable pi,k,n is the transmis-
sion power, and hi,k,n is the channel gain representing the link
transmission loss from user i to remote server k on channel
n. The denominator is Signal to Interference plus Noise Ratio
(SINR), where σ2 is the noise power and Ii,k,n denotes the
interference caused by nearby users to user i on channel n. It
can be expressed as:

Ii,k,n =
λ∑

x=1,x̸=i

M+1∑
y=1

ax,y,npx,y,nh
k
x,y,n, (7)

where x and y are the serial number of users and MEC servers,
respectively. The variable ax,y,n is a binary variable, and when
it equals to 1, the channel n is allocated to perform task τx,y
from UE x to SeNB y. Otherwise, ax,y,n = 0. Hence, the total
transmission rate of this frequency band can be obtained by:

ri,k =

N∑
n=1

ai,k,nri,k,n, (8)

where each task can occupy at most one channel, i.e.∑N
n=1 ai,k,n ≤ 1. Therefore, the transmission time of the ith

user on module j can be represented as:

ti,j = ti,j,α→β + ti,j,α→γ + ti,j,β→γ + ti,j,γ→β , (9)

The transmission time consists of four situations, where
arrows indicate the direction of computing platforms for
offloading, e.g. ti,j,α→β denotes the situation that module j−1
is processed locally, and module j is offloaded to the edge
node. Thus, we have to consider the transmission time from



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2868616, IEEE Internet of
Things Journal

6

the local IoT-based device to the remote MEC server. Equation
(10) lists the calculation formulations for the four situations:

ti,j,α→β = yi,j,β
di,j
ri,k

,

ti,j,α→γ = yi,j,γ(
di,j

ri,M+1
+ πi,j,k),

ti,j,β→γ = yi,j−1,βyi,j,γπi,j,k,

ti,j,γ→β = yi,j−1,γyi,j,βπi,j,k,

(10)

where πi,j,k denotes the transmission time from SeNB k to
the MCC server.

3) Problem formulation: As mentioned above, the compu-
tation offloading delay includes two parts: the processing time
and the transmission time. There is a trade-off between the
two parts due to their differences in computing capability and
distances. The MCOP can be formulated as follows:

min
α,β,γ

Delay =

λ∑
i=1

η∑
j=1

(pi,j + ti,j), (11)

s.t.

C1 :α+ β + γ = 1, α, β, γ ∈ {0, 1},
C2 :yi,j,α + yi,j,β + yi,j,γ = 1,

yi,j,α, yi,j,β , yi,j,γ ∈ {0, 1},

C3 :
∑
j

yi,j,α + yi,j,β + yi,j,γ = η, ∀i ∈ [1, λ],

C4 :
N∑

n=1

ai,k,n ≤ 1, ai,k,n ∈ {0, 1},

C5 :
λ∑

i=1

yi,j,β ≤ min{λ,M},∀j ∈ [1, η],

C6 :0 ≤
∑
i,j

yi,j,β ≤ M,

C7 :
λ∑

i=1

yi,j,γ ≤ λ, ∀j ∈ [1, η],

C8 :0 ≤
∑
i,j

yi,j,γ ≤ λη,

Equations : (2)− (10).

where constraints C1 and C2 guarantee that each module can
only be processed on one platform, i.e. either the local IoT-
based device, the MEC server or the cloud. Constraint C3
ensures all application modules of user i can be processed.
Constraint C4 indicates each user can only be assigned one
channel. Constraints C5 and C6 reflect that MEC resources of
MEC are limited so that each MEC server can only handle
one module offloading request. The equation yi,j,β = 1 means
the jth module of the ith user is executed by MEC servers.
Meanwhile, the MEC server is constraint in the multi-user
computation offloading problem, and its total number is M.
The number of MEC servers occupied by users cannot exceed
the total number of MEC servers. Therefore, the parameter in
constraint 5 has to be less than M. Instead, constraints C7 and
C8 illustrate that cloud resources are not limited, which can
be used by multiple users simultaneously.

The multi-user computation partitioning for the offloading
strategy between the local device and the remote cloud server
is an MILP problem, which is proved to be NP-hard [6]. Tak-
ing the interference among users and the computing resource
restriction into consideration, our MCOP is more complicated
and difficult to solve than the multi-user computation partition-
ing problem. Thus, we design a heuristic algorithm to solve
MCOP. For each UE, we first simplify MCOP to SCOP, and
obtain the initial optimal solution by the branch and bound
algorithm, where the MEC resources are unconstrained. Then,
the initial offloading schedule of UEs with resource conflicts
are adjusted due to the limited MEC servers.

IV. AN ITERATIVE HEURISTIC RESOURCE ALLOCATION
ALGORITHM

We specify the IHRA algorithm in this section. First, some
important data structures and functions are illustrated before
presenting the IHRA algorithm.

A. Initial Input

A three-dimensional decision matrix φ, whose shape is
3λ(η+2), is created to record the offloading decision of IoT-
based UEs. Herein, 3 indicates three computing platforms for
offloading: the local IoT-based device, the MEC server and the
MCC server, η+2 and λ represent the number of modules and
users, respectively. Note that we add two additional modules 0
and η+1 as input and output modules, which virtually exist on
UEs. Thus, the size of the second dimension of the decision
matrix is η+2. For example, φ[1;5;6] = 1 means the fifth
module of the sixth UE is offloaded onto the MEC server.
According to constraint C2, φ[0;5;6] and φ[2;5;6] must be 0
since each module can only run on one platform.

Before solving the MCOP, we first recall the SCOP, which
is the basis of our heuristic algorithm. When the computation-
intensive task is executed on IoT-based UE i, it may need
offloading services. Consequently, UE i sends its offloading
requirement set ϕi = { Di, Ci, f l

i , pi } to the nearest SeNB,
in which the Di, Ci, f l

i and pi represent the data volume of all
modules, the required CPU cycles, the computation capability
of the device and the transmission power, respectively. Once
the SeNB receives the request, it solves the SCOP by using
the branch and bound method and obtains an initial decision
matrix.

B. Feedback Function

Since the MEC resource is limited under the multi-user
condition, we have to deal with the situation of resource con-
flicts in the initial decision matrix that is calculated by solving
SCOP. The feedback function F is designed to alleviate the
conflicts and allocate the MEC resource, which can be defined
by:

F = Dorig −Dadj (12)

where Dorig is the original total execution delay calculated by
SCOP, and Dadj is the adjusted total execution delay caused
by modification.



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2868616, IEEE Internet of
Things Journal

7

In order to minimize the overall execution delay, we prefer
to adjust the UE with the least impact on the entire system.
Before and after the modification, the first UE in the feedback
function has the smallest overall delay increase. In other word-
s, this UE has the least dependence on the MEC resources.

C. Algorithm Description

Algorithm 1 presents the pseudo code of the iterative
heuristic MEC resource allocation scheme. The input of IHRA
includes λ UEs with their offloading requirements ϕ, M edge
nodes with their computation capabilities fe, and the compu-
tation capability of the cloud server f c. First, we compute the
optimal application execution delay Dorig for each UE without
considering the MEC resource constraint. The branch and
bound algorithm is adopted to solve the SCOP, which outputs
the initial offloading schedule recorded in matrix φ (line 1-2).
Then, we count the UEs that occupy the MEC resources, and
denote it as λ̃. Whether applications on UE i are offloaded onto
the edge node can be obtained by checking the second row of
UE i’s decision matrix (line 3). The adjusted execution delay
Dadj and offloading decision matrix are computed similar with
SCOP but without considering MEC resources. To reduce the
time complexity of our algorithm, only the UEs in λ̃ are
computed (line 4-5). After obtaining Dorig and Dadj , we can
compute the feedback function according to equation (12) (line
6). Next, a while loop is formulated to iteratively perform
MEC resource allocation by updating the initial decision
matrix until all MEC resource conflicts are solved (line 8-14).
In each iteration, we sort list F in a descending order. The
first UE λi in F is the current adjustment target, because our
method has the minimal average delay growth when adjusting
the offloading schedule of λi. The offloading schedule of λi

can be found in the adjusted decision matrix. The value of
λi in φinitial and Dorig is updated with φadjusted and Dadj ,
respectively. We can obtain the final offloading decision matrix
φ after the resource allocation (line 15).

Algorithm 1 The Iterative Heuristic MEC Resource Allocation
for MCOP.
Input: λ, M , ϕi = { Di, Ci, f l

i , pi }, fe and f c;
Output: The offloading decision matrix φ;

1: Compute the execution delay Dorig;
2: Obtain initial offloading decision matrix φinitial;
3: Count λ̃
4: Compute the adjusted execution delay Dadj ;
5: Obtain adjusted offloading schedule φadjusted;
6: F = Dorig −Dadj

7: Sort list F in descending order
8: while λ̃ > M do
9: Select the first UE λi from the list F

10: Update φinitial[λi] := φadjusted[λi]
11: Update Dorig[λi] := Dadj[λi]
12: Remove λi from λ̃
13: λ̃ ⇐ λ̃− 1
14: end while
15: return final offloading decision matrix φ;

For example, if there are 5 MEC servers in one local
region, the IoT-based UEs from λ1 to λ10 send their offloading
requirements to the SeNBs, which compute the values of Dorig

and φinitial. UE λ3 does not occupy MEC resources, i.e., all
offloaded requests of λ3 are processed by the cloud server.
Then the SeNB computes the Dadj and φadjusted of the rest
of the UEs except λ3. Thus, the number of UEs in λ̃ is 9 and
feedback function list F can be obtained. Since only 5 UEs
can be served by MEC servers, the offloading requirements of
4 UEs have to be adjusted from the MEC servers to the cloud
server. We adjust the offloading decision according to the list
F , which is sorted in a descending order. UE λ5 ranks the first
one in the list, i.e., when we adjust the offloading schedule of
λ5, the average delay growth of all UEs is minimal. Thus,
its offloading tasks are adjusted to be processed by the cloud
server instead of the MEC server. The decision matrix and
execution delay are updated. The similar process is repeated
4 times until no MEC resource conflict exists. The IHRA
algorithm outputs the final offloading decision.

D. Computation Complexity Analysis

In this section, we prove that the proposed IHRA algorithm
can be resolved in polynomial time.

Theorem 1: The computation complexity of the proposed
IHRA algorithm is O(N(M+log2 N)), where N is a constant
multiple of UE number λ, M is the number of MEC servers,
and λ > M holds.

Proof: The time complexity of IHRA mainly contains two
parts, i.e., the initialization stage and the while loop stage. For
the former part, the computation complexity of the branch and
bound algorithm to solve SCOP is O(λ(M + 2)3η−1). The
parameters λ, η and M remain unchanged during the compu-
tation of the adjusted execution delay and offloading schedule,
and its time complexity is O(λ2η). The time complexity of
the sorting process is O(λ log2 λ). Thus, the time complexity
of the initialization stage is O(λ((M+2)3η−1+2η+log2 λ)).
In the while loop, it mainly performs some update operations,
whose time complexity is O(λ − M). We consider that the
number of UEs is much larger than that of MEC servers, i.e.,
λ > M . If λ < M , it does not need to perform the while loop
to handle MEC resource conflicts. By combining two parts of
IHRA algorithm, the total time complexity can be expressed
as O(λ((M + 2)3η−1 + 2η + log2 λ) + (λ−M)) if λ > M ,
and O(λ((M+2)3η−1+2η+log2 λ)) if λ < M . Because η is
a constant, O(λ((M +2)3η−1 +2η + log2 λ)+ (λ−M)) can
be simplified as O(N(M + log2 N)), where N is a constant
multiple of λ. Thus, the proposed algorithm can be solved in
polynomial time.

Since the computation complexity of the brute-force search-
ing algorithm can be denoted by O(λ3η−1(M + 2)!), the
computation complexity of IHRA algorithm is much lower
compared with the brute-force searching algorithm. For ex-
ample, when λ = 40, η = 6 and M = 20, the time complexity
of the brute-force searching algorithm is 5.04 × 1019 times
higher than that of our proposed algorithm.



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2868616, IEEE Internet of
Things Journal

8

TABLE I: Simulation Parameters

Simulation Parameter Value

Number of application modules η 6
Cloud server CPU frequency fc 64 GHz
MEC server CPU frequency fe 16 GHz

UE CPU frequency f l 1.2 GHZ
Data size of each module di,j 500-1500 KB

Required CPU cycles ci,j 0.2-0.3 GHz
Transmit power of UE pi,k,n 23 dBm

Noise power σ -114 dBm

V. PERFORMANCE EVALUATION

In this section, we evaluate the proposed IHRA algorithm
based on the layered heterogeneous network. The features
of both MCC and MEC are taken into consideration. In the
following, we first introduce the simulation setup, and then
present the experimental results.

A. Simulation Setup

We select the application of augmented reality framework
ARkit as shown in Fig.2 in our evaluation. The ARkit has
6 modules, i.e., the number of the application modules is η
= 6. The cloud server is far from UEs, and its computation
capability f c represented by CPU frequency is 64 GHz. The
MEC server locates in proximity of the SeNB, whose CPU
frequency is 16 GHz. The characteristics of MEC and MCC
are distinguished by their CPU frequencies and distances from
the user. Each UE has different tasks to be executed. Based
on the framework of augmented reality, all applications in our
experiment can be divided into several submodules. Different
applications can be represented by different volumes of data
and required CPU cycles of submodules. In our experiment,
the data size and required CPU cycles of each module are
randomly generated between [500,1500] KB and [0.2,0.3]
GHz, which simulate scenarios for different applications. The
CPU frequency of UEs is 1.2 GHz. For simplicity, we assume
that the same application runs on all UEs. However, we can
easily extend the model by considering different users with
various applications. The algorithm in Section 4 is still able to
be applied to solve the offloading decision problem by setting
different η in each iteration. There are 10 channels for each
UE and the bandwidth is 0.2 MHz. The transmission power of
each UE is 23 dBm. The noise power is -114 dBm. In addition
to the parameter settings listed in Table 1, it is also important
to initialize different applications. Especially, for those partial
offloading applications, their non-offloadable submodules are
manually set to be executed locally, whose indicator yi,j,α is
equal to 1. For convenience, the selected ARkit framework
does not have non-offloadable parts.

We compare the proposed IHRA algorithm with three base-
line algorithms: MCC based offloading, MEC based offloading
and all local based offloading. MCC based offloading and
MEC based offloading represent that there are only cloud
computing resources and MEC resources, respectively; All
local based offloading indicates that all modules are executed
on the UEs. Because execution delay is the optimization target

5 10 15 20 25 30 35
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

A
ve

ra
ge

 D
el

ay
 R

at
io

Number of MEC servers

 MCC based offloading
 MEC based offloading
 All local based offloading
 IHRA

Fig. 5: Comparison of ADR under different number of MEC
servers(λ = 40).

20 25 30 35 40 45 50 55 60 65 70 75 80 85

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

A
ve

ra
ge

 D
el

ay
 R

at
io

Number of UEs

 MCC based offloading
 MEC based offloading
 All local based offloading
 IHRA

Fig. 6: Comparison of ADR under different number of UEs
(M = 20).

considered in this paper, for intuitive performance analysis, we
define the Average Delay Ratio (ADR) by:

ADR =
DIHRA

Dadj
, (13)

The numerator is the optimal execution delay of all UEs
computed by the proposed IHRA algorithm. The denominator
is the optimal execution delay computed by existing schemes.
Corresponding to the three basic algorithms: MCC, MEC and
all local based offloading, Dadj is computed in the situation of
non-MEC, non-MCC or all executed locally, respectively. In
particular, most works are focusing on the situations of MCC
based offloading and MEC based offloading.

B. Experimental Results

Network performances of the IHRA algorithm are shown in
Figs.5-10.



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2868616, IEEE Internet of
Things Journal

9

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
A

ve
ra

ge
 D

el
ay

 R
at

io

The ratio of MEC servers and UEs

 MCC based offloading
 MEC based offloading
 All local based offloading
 IHRA

Fig. 7: The ADR performance varies from M /λ.

0 5 10 15 20 25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f l

oa
de

d 
m

od
ul

es

Number of MEC servers

 MCC-loaded
 MEC-loaded

Fig. 8: The proportion of MEC and MCC varies from M .

In Fig.5, the number of IoT-based UEs is fixed at 40. We
compare the ADR based performance under different number
of MEC servers. Among three kinds of ADR curves, the
MCC based offloading and all local based offloading decrease
as the number of M increases. When M 6 15, the MEC
server does not cope with the offloading task, and the addition
of the MEC servers reduces the delay by approximately 10
percent compared to the cloud computing only. From the all
local based offloading curve we can discover, computation
offloading significantly reduces the execution latency of high
demanding applications by approximate 60 percent. When the
value of M is larger than 20, the proposed algorithm achieves
a much better performance than the MCC based offloading,
because the MEC processes most of the offloading requests.
The total execution delay can be reduced by more than 30
percent. Furthermore, offloading has a great impact on users,
with which the delay of all local based offloading comput-
ing is reduced by 70 percent. Different from the other two
curves, the performance of MEC based offloading increases

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

A
ve

ra
ge

 D
el

ay
 R

at
io

Delay between MCC and SeNBs (s)

 MCC based offloading
 MEC based offloading
 All local based offloading
 IHRA

Fig. 9: The ADR performance varies from the latency between
the cloud server and SeNBs.

3 4 5 6 7 8

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
A

ve
ra

ge
 D

el
ay

 R
at

io

Number of application modules

 MCC based offloading
 MEC based offloading
 All local based offloading
 IHRA

Fig. 10: The ADR performance varies from the number of
application modules.

as M increases. It reflects the proportion of collaborative
cooperation between MEC and cloud computing. When M
is large, the MEC resources are adequate, and the delay of
the iterative heuristic algorithm can only decrease less than
10 percent. However, when MEC resources are scarce, our
algorithm can reduce the execution delay by 50 percent, which
demonstrates the importance of cloud computing when the
MEC server is not enough to handle all requests. Note that
the ADR is the indicator of the performance evaluation, which
is defined as the ratio of the proposed IHRA algorithm and
benchmark methods. The upper bound of the ADR is IHRA.
Thus, the performance of the proposed algorithm is always
equal to 1 in our simulation. In summary, Fig.5 illustrates
the iterative algorithm provides better performance than other
baseline algorithms and is able to provide a better performance
by the full utilization of MEC resources.

In Fig.6, we fix the number of MEC servers to 20, and



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2868616, IEEE Internet of
Things Journal

10

compare the ADR based performance of the three baseline
algorithms when the number of IoT-based UEs increases from
20 to 85. The performance of the MEC based offloading
decreases as λ increases, because limited MEC resources
cannot handle a large number of UEs’ offloading tasks. In
contrast, when the number of UEs is small, the performance
of MCC based offloading is poor, and it increases as λ adds.
This phenomenon shows that the advantage of unconstrained
cloud computing resources is obvious in dealing with a large
number of user requests. MEC can largely reduce execution
delay when resources are relatively sufficient. Since the all
local based offloading curve is always under 0.5, whenever
the whole application is executed locally, the total delay is
always much larger than that of the computation offloading.

The ADR performance varying from the ratio of MEC
server number and IoT-based UE number is presented in
Fig.7. Since MEC resources are relatively scarce, resources
need to be configured according to the number of users.
In contrast, MCC servers have strong computing capability
and relatively rich resources, and generally do not consider
resource allocation. Therefore, we consider the ratio of MEC
servers and UEs, and do not consider the ratio of MCC servers
and UEs. It is obvious that the greater the value of M /λ
is, the better IHRA performance is. However, considering
reasonable and efficient usage of resources and economic
costs, we can never infinitely increase MEC resources. We can
observe that when M /λ <1/2, ADR performance increases
rapidly with the increasing of M /λ. At this point, MEC
resources are relatively scarce, and more resources are needed.
When M /λ >1/2, ADR performance increases slowly with
the increase of M /λ. MEC resources are gradually becoming
saturated at this time. Deploying a lot of MEC servers can
reduce the usage efficiency and increase the economic burden.
Thus, making the number of the MEC servers equal to half the
number of UEs is an effective and economic efficient solution
in our investigated problem. The obtained optimal proportion
works for our simulations, where the number of UEs and MEC
servers is relatively small. In addition, the proposed method
is also applicable to a realistic scenario with a large number
of users.

Fig.8 shows the proportion of MEC and MCC loaded
modules under different numbers of MEC servers. With the
increasing number of MEC servers, the ratios of MEC-loaded
and MCC-loaded modules approximately grow and decline
linearly, respectively. When the number of MEC servers is
relatively small, cloud computing can handle most of the
offloading tasks. MCC is indispensable in our offloading
model. However, when the MEC resources are sufficient,
cloud computing only plays an auxiliary role, which can be
viewed as an integral part of the entire offloading system.
Without cloud computing, we cannot handle user requests with
explosive growth in a short period of time. Therefore, MCC
and MEC are complementary with each other, which reflects
the cooperative relationship between MEC and MCC.

The latency between the cloud server and SeNBs affects
the offloading schedule of the IoT-based UEs. Compared with
MEC, the advantages of MCC are with rich computing re-
sources and powerful computing capability. High transmission

delay can weaken this advantage since the saved processing
delay can not make up for the increased transmission delay.
Fig.9 presents the ADR performance varying from the latency
between the cloud server and SeNBs. Not surprisingly, the
performance of MCC based offloading decreases when the
latency increases, and MEC based offloading reverses. When
the latency is large, the performance improvement of the MEC
based offloading algorithm fully demonstrates its advantage of
the proximity to users. As for all local based offloading, the
difference of latency has little effect on its execution delay.

As shown in Fig.10, we evaluate the proposed IHRA
algorithm under different number of application modules. The
number of IoT-based UEs λ and MEC servers M is set to
40 and 20, respectively. The ADR performances of three
baseline algorithms remain stable with the changing of module
number, which proves that IHRA is suitable for applications
with different network situations.

VI. CONCLUSION

In this paper, we devote to enable the latency sensitive
applications to run on IoT user equipments by implementing
partial computation offloading. First, we consider the single
user offloading problem, where the MEC resources are consid-
ered to be unconstrained. Later, we extend it to the multi-user
offloading problem, where both the resource constraint and the
interference among multiple users are taken into consideration.
Due to the computation complexity of the formulated problem,
an iterative heuristic MEC resource allocation scheme is put
forward for making the computation offloading decision under
the multi-user situation. Simulation experiment illustrates the
superiority of the proposed algorithm, which can lower at
most 30 percent of execution delay compared with baseline
algorithms. The optimal ratio of MEC servers and IoT-based
UEs is also demonstrated by considering efficient usage of
resources and economic costs. Last but not least, our IHRA is
suitable for various kinds of applications. Energy assumption
will be considered to achieve green city in the near future.

VII. ACKNOWLEDGMENT

The work is supported by National Natural Science Foun-
dation of China with No. 61572106 and No. 61502075, the
Fundamental Research Funds for the Central University with
No. DUT18JC09 and No. DUT17RC(4)49, State Key Lab-
oratory for Novel Software Technology, Nanjing University
(KFKT2018B04).

REFERENCES

[1] J. Huang, C. Xing, and C. Wang, “Simultaneous wireless information
and power transfer: Technologies, applications, and research challenges,”
IEEE Communications Magazine, vol. 55, pp. 26–32, NOVEMBER
2017.

[2] Z. Ning, X. Hu, Z. Chen, M. Zhou, B. Hu, J. Cheng, and M. S. Obaidat,
“A cooperative quality-aware service access system for social internet of
vehicles,” IEEE Internet of Things Journal, vol. 5, no. 4, pp. 2506–2517,
2018.

[3] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust,
“Mobile-edge computing architecture: The role of mec in the Internet of
things,” IEEE Consumer Electronics Magazine, vol. 5, no. 4, pp. 84–91,
2016.



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2868616, IEEE Internet of
Things Journal

11

[4] Z. Ning, F. Xia, N. Ullah, X. Kong, and X. Hu, “Vehicular social
networks: Enabling smart mobility,” IEEE Communications Magazine,
vol. 55, pp. 49–55, May 2017.

[5] T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, and H. Flinck, “Mobile edge
computing potential in making cities smarter,” IEEE Communications
Magazine, vol. 55, pp. 38–43, March 2017.

[6] L. Yang, J. Cao, H. Cheng, and Y. Ji, “Multi-user computation partition-
ing for latency sensitive mobile cloud applications,” IEEE Transactions
on Computers, vol. 64, pp. 2253–2266, Aug 2015.

[7] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation
task scheduling for mobile-edge computing systems,” in 2016 IEEE
International Symposium on Information Theory (ISIT), pp. 1451–1455,
July 2016.

[8] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE
Journal on Selected Areas in Communications, vol. 34, pp. 3590–3605,
Dec 2016.

[9] O. Muoz, A. Pascual-Iserte, and J. Vidal, “Joint allocation of radio
and computational resources in wireless application offloading,” in 2013
Future Network Mobile Summit, pp. 1–10, July 2013.

[10] O. Muoz, A. Pascual-Iserte, and J. Vidal, “Optimization of radio and
computational resources for energy efficiency in latency-constrained
application offloading,” IEEE Transactions on Vehicular Technology,
vol. 64, pp. 4738–4755, Oct 2015.

[11] X. Wang, Z. Ning, and L. Wang, “Offloading in Internet of vehicles: A
fog-enabled real-time traffic management system,” IEEE Transactions
on Industrial Informatics, Doi: 10.1109/TII.2018.2816590, 2018.

[12] W. Labidi, M. Sarkiss, and M. Kamoun, “Joint multi-user resource
scheduling and computation offloading in small cell networks,” in 2015
IEEE 11th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), pp. 794–801, Oct 2015.

[13] M. Kamoun, W. Labidi, and M. Sarkiss, “Joint resource allocation and
offloading strategies in cloud enabled cellular networks,” in 2015 IEEE
International Conference on Communications (ICC), pp. 5529–5534,
June 2015.

[14] W. Labidi, M. Sarkiss, and M. Kamoun, “Energy-optimal resource
scheduling and computation offloading in small cell networks,” in 2015
22nd International Conference on Telecommunications (ICT), pp. 313–
318, April 2015.

[15] S. Barbarossa, S. Sardellitti, and P. D. Lorenzo, “Joint allocation of
computation and communication resources in multiuser mobile cloud
computing,” in 2013 IEEE 14th Workshop on Signal Processing Ad-
vances in Wireless Communications (SPAWC), pp. 26–30, June 2013.

[16] W. Hou, Z. Ning, and L. Guo, “Green survivable collaborative edge
computing in smart cities,” IEEE Transactions on Industrial Informatics,
vol. 14, pp. 1594–1605, April 2018.

[17] Y. Zhao, S. Zhou, T. Zhao, and Z. Niu, “Energy-efficient task offloading
for multiuser mobile cloud computing,” in 2015 IEEE/CIC International
Conference on Communications in China (ICCC), pp. 1–5, Nov 2015.

[18] C. You and K. Huang, “Multiuser resource allocation for mobile-
edge computation offloading,” in 2016 IEEE Global Communications
Conference (GLOBECOM), pp. 1–6, Dec 2016.

[19] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Transactions on Communications, vol. 64, pp. 4268–4282, Oct
2016.

[20] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, “Power-delay tradeoff
in multi-user mobile-edge computing systems,” in 2016 IEEE Global
Communications Conference (GLOBECOM), pp. 1–6, Dec 2016.

[21] Z. Ning, X. Wang, X. Kong, and W. Hou, “A social-aware group
formation framework for information diffusion in narrowband Internet of
things,” IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1527–1538,
2018.

[22] J. Zhang, X. Hu, Z. Ning, E. C. H. Ngai, L. Zhou, J. Wei, J. Cheng, and
B. Hu, “Energy-latency trade-off for energy-aware offloading in mobile
edge computing networks,” IEEE Internet of Things Journal, vol. 5,
no. 4, pp. 2633–2645, 2018.

[23] P. Mach and Z. Becvar, “Mobile edge computing: A survey on ar-
chitecture and computation offloading,” IEEE Communications Surveys
Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[24] H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and R. Buyya,
“Mobile code offloading: from concept to practice and beyond,” IEEE
Communications Magazine, vol. 53, no. 3, pp. 80–88, 2015.

[25] X. Wang, Z. Ning, M. Zhou, X. Hu, L. Wang, B. Hu, R. Kwok,
and Y. Guo, “A privacy-preserving message forwarding framework for
opportunistic cloud of things,” IEEE Internet of Things Journal, Doi:
10.1109/JIOT.2018.2864782, 2018.

[26] O. Munoz, A. Pascual-Iserte, and J. Vidal, “Optimization of radio and
computational resources for energy efficiency in latency-constrained
application offloading,” IEEE Transactions on Vehicular Technology,
vol. 64, no. 10, pp. 4738–4755, 2015.

[27] C. Wang, F. R. Yu, C. Liang, Q. Chen, and L. Tang, “Joint computation
offloading and interference management in wireless cellular networks
with mobile edge computing,” IEEE Transactions on Vehicular Tech-
nology, vol. 66, no. 8, pp. 7432–7445, 2017.

[28] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks with
mobile edge computing,” IEEE Transactions on Wireless Communica-
tions, vol. 16, no. 8, pp. 4924–4938, 2017.

[29] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795–2808, 2016.

 

Zhaolong Ning (M’14) received the M.S. and PhD
degrees from Northeastern University, Shenyang,
China. He was a Research Fellow at Kyushu Uni-
versity, Japan. He is an associate professor in the
School of Software, Dalian University of Technol-
ogy, China. He has published over 80 scientific
papers in international journals and conferences. His
research interests include Internet of vehicles, edge
computing, and mobile computing.

Peiran Dong received B.S. degree from Dalian
University of Technology, Dalian, China, in 2018.
He is currently working toward the M.S. degree in
Software Engineering at the Dalian University of
Technology. His research interests include mobile
edge computing, network computation offloading
and resource management.

 

Xiangjie Kong (M’13-SM’17) received the Ph. D.
degree from Zhejiang University, Hangzhou, China.
Currently, he is an Associate Professor in School
of software, Dalian University of technology, Chi-
na. He has published over 50 scientific papers in
international journals and conferences. His research
interests include big traffic data, social computing,
and mobile computing.

 

Feng Xia (M’07-SM’12) received the BSc and PhD
degrees from Zhejiang University, Hangzhou, China.
He was a Research Fellow at Queensland University
of Technology, Australia. He is currently a Full
Professor in School of Software, Dalian University
of Technology, China. He is the (Guest) Editor of
several international journals. He serves as General
Chair, PC Chair, Workshop Chair, or Publicity Chair
of a number of conferences. Dr. Xia has published 2
books and over 200 scientific papers in international
journals and conferences. His research interests in-

clude computational social science, big data, and mobile social networks. He
is a Senior Member of IEEE and ACM, and a Member of AAAS. Prof. Xia
is the corresponding author. Contact him at f.xia@ieee.org.


